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Effectiveness and efficiency of avian species detection: a 
comparison between field observers and automatic recording 
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Abstract: The monitoring of animal populations is essential for reporting on the state of the environment, with birds 
often used as indicators of ecosystem health. Traditionally, bird monitoring has been done by field observers; however, 
there has been recent interest in use of automatic recording devices (ARDs) as an alternative. A monitoring programme 
managed by the New Zealand Department of Conservation (DOC), used observers and ARDs concurrently for three 
survey seasons, providing the opportunity to compare results in terms of effectiveness and efficiency. The difference in 
species-richness estimates from the two methods was small, with the observer method detecting slightly higher numbers 
of species in all habitat types. Detection probabilities for individual species, derived from occupancy analysis, were 
similar between methods, with a few exceptions: bellbird (Anthornis melanura), brown creeper (Mohoua novaeseelandiae), 
tūī (Prosthemadera novaeseelandiae), North/South Island robin (Petroica longipes/australis), and rifleman (Acanthisitta 
chloris). Bellbird and rifleman had a higher probability of being detected by ARDs, whilst the remainder were more 
likely to be detected by observers. Differences in detection probability may be due to identification confusion in the case 
of bellbird and tūī, and observer ability to detect and identify birds visually for brown creeper and North/South Island 
robin. The relationship between indices of abundance from the observer and ARD methods varied between species and 
habitat types. These inconsistencies suggested that the ARD results did not correlate closely with observed abundance, 
which may limit the ARD method to provision of confirmed presence data. Observer counts proved to be more time-
efficient given present levels of processing technology, mainly due to the longer processing time required for ARD 
recordings. However higher numbers of people were required for observer counts, which may be problematic when 
there is a shortage of appropriately skilled observers at the required time of year. 
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INTRODUCTION
There are strong social, economic, and ethical 
drivers, both national and international, behind the 

development of biodiversity monitoring systems 
which enable measurement of biodiversity trends 
and the impacts of management for reporting on 
the state of the environment (Allen et al. 2003; Lee 
et al. 2005). The National Biodiversity Monitoring 
and Reporting System, administered by the New 
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Zealand Department of Conservation (DOC), was 
recently developed and implemented to provide 
a multi-tiered monitoring framework to enable 
reporting on national trends in biodiversity 
(referred to as “Tier 1”), effectiveness and impacts 
of management (“Tier 2”), and research/long-term 
monitoring objectives (“Tier 3”; Allen et al. 2009). 
Monitoring populations of common and widespread 
bird species is one of the key measures of the 
programme, as birds can be useful environmental 
indicators (Bibby et al. 2000). This is particularly 
the case when species diversity, distribution and 
abundance, species-habitat relationships, and 
responses to environmental change or management 
can be determined (Simons et al. 2007).

Implementing a national monitoring 
programme requires considerable resources, 
especially the mobilisation of appropriately-skilled 
staff and sufficient finances, both of which may be 
limited. The challenge is, therefore, to maximise 
data collection efficiency wherever possible, 
without compromising data quality. Use of novel 
technologies has the potential to reduce time and 
staffing requirements and improve efficiency. 
Recent technological developments have produced 
tools with the potential to augment or even replace 
the more traditional field observer approaches to 
ecological monitoring (e.g. Xie et al. 2008; Nagendra 
et al. 2013). Use of automatic recording devices 
(ARDs) has increased dramatically in recent years 
(Brandes 2008; Steer 2010; Frick 2013; Cook & 
Hartley 2018), with ever-more elaborate systems 
enabling, for example, monitoring of complete 
habitats via use of sensor networks (Szewczyk et al. 
2004).

In bird monitoring, ARDs are gaining 
popularity as an increasing range of devices has 
become available (Brandes 2008; Frick 2013). Upon 
initiation of the Tier 1 Monitoring Programme, 
DOC recognised an opportunity to test the relative 
effectiveness for species detection and efficiency 
between field observer and ARD-based bird 
monitoring techniques, and to inform decisions on 
long-term choice of survey method.

Several previous studies have compared 
species detection abilities of observers and ARDs. 
Haselmeyer & Quinn (2000) found that the two 
methods were overall equally effective at detecting 
species-richness, although ARDs detected more 
species when richness was high and observers 
were more effective for rarely-heard species. 
Likewise, Sedlácek et al. (2015) found that the 
ARD and observer methods provided similar 
estimates for species-richness, abundance, and 
community composition. Wimmer et al. (2013) 
showed that ARDs were able to detect a higher 
number of species than observers, whereas in 
some other studies the observer method was more 

effective (Hutto & Stutzman 2009; Leach et al. 2016; 
Stewart & Hasenbank 2018). Holmes et al. (2014) 
found ARDs to be the most time-efficient method; 
however, Hutto & Stutzman (2009) found ARDs 
to be less time-efficient than observers. All these 
studies focused on a limited number of sites in their 
respective countries and were not part of a national 
monitoring programme. To our knowledge, there 
have been three studies to date which compared 
observers and ARDs within New Zealand (Digby 
et al. 2013; Stewart & Hasenbank 2018; Bombaci & 
Pejchar 2019). However, the comparisons were for 
single species and/or at only one or few geographic 
locations. This study compared data collected 
simultaneously by field observers and ARDs 
for a national monitoring programme on Public 
Conservation Lands (PCL), and simultaneously 
assessed the effectiveness of the two methods in 
terms of species detection, estimation of abundance, 
and efficient use of resources.

MATERIALS AND METHODS

Field sampling protocols
The Tier 1 Monitoring Programme was initiated 
in 2011 and is based upon a randomly-placed 8 
km grid, covering mainland New Zealand and 
offshore islands. A total of 1,354 randomly-selected 
grid intersection points within Public Conservation 
Lands (which extend to one third of New Zealand’s 
land area; DOC 2015), were used to determine 
sampling locations. Locations are sampled on a five-
year cycle, meaning approximately 270 are sampled 
each survey season (October to March inclusive).

Sampling locations were established and 
measured as per the methods described in MacLeod 
et al. (2012) and Mortimer & Greene (2017). At each 
sampling location there were 5 bird count stations, 
spaced approximately 200 m apart (Fig. 1). A single 
ARD was deployed at each bird count station, set 
to record concurrently with the field observer bird 
count.

ARDs were set to record continuously for 
one nocturnal time-period (2000 h – 0600 h; New 
Zealand daylight saving time, GMT + 13 hrs) and 
one diurnal time-period (0700 h – 1300 h). The 
ARDs were developed and designed by DOC, each 
incorporating 4 x wm61a electrets microphones in 
parallel with a foam ‘pop filter’ and custom-made 
low noise pre-amplifier with a DSP anti-aliasing 
filter. Recordings were stored on Secure Digital 
(SD) memory card as a series of compressed 32 
kHz, 16-bit audio files in waveform audio format 
(.WAV file extension), with a bit-rate of 512 kbps, 
each approximately 15 minutes in length.
A 5-minute bird count (an index of relative 
abundance, not adjusted for detection probability) 
was completed at each station, using standardised 
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methods adapted from Dawson and Bull (1975). 
Although all birds seen or heard were noted, 
whether these observations were aural or visual 
was not recorded. To enable comparison between 
observer counts and processed ARD recordings, 
the precise start of each count was identified by 
a field observer clearly vocalising the start of the 
5-minute bird count, to effectively synchronise 
both methods. Counts began not less than 1 hour 
after official sunrise and were completed by 1300 
h. If time allowed, two 5-minute bird counts were 
completed at each station, with a minimum of 60 
minutes between counts at the same station. A 
single 5-minute count period per station was used 
in the comparison between ARD and observer 
methods (usually the first period, unless in the 
event of adverse weather or ARD failure, in which 
case the second period was used). In addition to 
number and species of birds, observers recorded 
a range of environmental details as categorical 
covariates (i.e. temperature, sun, precipitation, 
wind, and noise; see Appendix 1). In practice, many 
sampling locations had fewer than five stations due 
to abandonment on safety grounds or excessive 
environmental noise (e.g. rivers, etc.). In addition, 
some recordings were excluded from processing, 
due to excessive noise from wind, rain, or other 
environmental sources (e.g. invertebrates). In cases 

where data for a 5-minute period were excluded 
for one method, the corresponding data for the 
other method in the same time period were also 
excluded (i.e. all 5-minute periods included in the 
analysis had data from the field observer and ARD). 
In summary, 47 sampling locations had 5 stations 
for which observations were recorded using both 
methods, 70 sampling locations had 4 stations, 92 
sampling locations had 3 stations, 131 sampling 
locations had 2 stations, and 58 sampling locations 
had 1 station. During the first three seasons of the 
Tier 1 Monitoring Programme (2011–12, 2012–
13, and 2013–14), diurnal ARD recordings were 
processed from 65, 88, and 245 sampling locations 
respectively, resulting in a total of 1,112 5-minute 
periods from 398 sampling locations with a field 
observer 5-minute bird count and a corresponding 
processed ARD 5-minute period (Fig. 2). The 
first two survey seasons had a reduced number 
of sampling locations surveyed due to phased 
implementation of the programme. 
Processing of ARD recordings
A single 5-minute period was processed for each 

Figure 1. Tier 1 Monitoring Programme sampling location 
design, showing locations of bird count stations (BIRA, 
BIRD, BIRM, BIRP, and BIRX).

Figure 2. Tier 1 sampling locations across New Zealand at 
which observer counts were completed and corresponding 
ARD recordings processed, with habitat type (figures in 
brackets show number of sampling locations per habitat).

Bird species detection method comparison



112

bird count station at each sampling location. 
ARD recordings were processed manually by 
experienced ornithologists, using the custom-
designed Freebird call analysis software, version 
1.1.6.4 (Freebird 2013). This generated sonograms 
from the recordings and allowed audio playback for 
species identification. Identified calls were tagged 
by drawing a box around the appropriate part of 
the sonogram and labelling it with the species name 
from a drop-down list. The processor identified and 
tagged presence of each species within 10-second 
blocks (30 blocks per 5-minute period). A species 
would not be tagged more than once in the same 
10-second block, irrespective of the number of calls. 
If a single call spanned multiple 10-second blocks, 
then the species was tagged as present in each 
block. To limit effects of fatigue, processors were 
advised not to spend more than 25 hours per week 
on processing. Upon completion of processing 
a 5-minute period, the results were exported in 
comma separated values (CSV) format and later 
aggregated for analysis. 

Data analyses
Each sampling location was assigned to the broad 
habitat type corresponding to assessment of the 
20 x 20 m vegetation survey plot (see Fig. 1): forest 
(234 sampling locations), non-forest (135 sampling 
locations), or shrubland (29 sampling locations). 
This classification was used to divide the sampling 
locations by habitat for graphical presentation of 
results. For statistical analyses, each bird count 
station was assigned a habitat type (forest, non-
forest, or shrubland), using Land Cover Database 
(LCDB) classifications (Thompson et al. 2003): see 
Appendix 2. For occupancy analysis this allowed 
the inclusion of habitat as a survey covariate in 
the estimation of detection probabilities for each 
survey method. Analyses were performed using 
the R statistical software (version 3.1.2; R Core Team 
2014) except occupancy estimates, which used 
program PRESENCE (version 10.5; Hines 2006). 
Comparisons between observer-based counts and 
ARD recordings were made using a range of metrics, 
namely species-richness, detection probability, and 
indices of abundance.

Relative effectiveness at detecting species-
richness was assessed by summing the total number 
of species recorded for each 5-minute period, for 
each survey method, then plotting the observer 
species-richness against ARD species-richness, with 
loess curves to model relationships. The data were 
then modelled using a generalised linear mixed 
model (GLMM) with a Poisson distribution, with 
observer species-richness as the response variable 
and ARD species-richness, habitat, wind, and noise 
as explanatory variables. Sampling location was 

included as a random effect, to account for the lack 
of independence of 5-minute count periods from the 
same sampling locations. Prior to modelling, ARD 
species-richness was normalized by subtracting the 
mean, and then dividing by the standard deviation 
(to produce a Z value). There were four candidate 
models, which included various combinations of 
explanatory variables (Table 1). The models were 
fitted with a unique intercept and slope (against 
the ARD species-richness) for each habitat type 
and the model with the lowest Akaike Information 
Criterion (AIC; Burnham & Anderson 2002) value 
was selected. The coefficient estimates indicate, on 
a logarithmic scale, the effect size of the explanatory 
variables on the response variable. Diagnostic plots 
were used to test validity of the model, following 
Zuur et al. (2013), and the data were tested for over-
dispersion.

Occupancy analysis (MacKenzie et al. 2018) was 
carried out for the top 16 species (those recorded at 
the highest number of sampling locations). For each 
5-minute count period, each species was assigned 
a 1 or 0 to indicate whether or not it was detected 
by each method. This resulted in four possible 
‘detection histories’: 00 (not detected by either 
method); 10 (detected by the observer method 
but not the ARD method); 01 (not detected by the 
observer method but detected by the ARD method); 
and 11 (detected by both methods). From this, we 
were able to calculate the detection probability 
for each species in a 5-minute count period. For 
species that occur on only the North or only the 
South Island, data were included only for sampling 
locations from the relevant island. A single-season 
multi-method analysis approach was used, which 
accounts for the lack of independence between 
detection methods for each sampling occasion 
(Nichols et al. 2008). Eight biologically plausible 
a priori candidate models were considered, which 
included various combinations of what were 
considered to be the most important survey 
covariates, i.e. habitat, wind, and noise (Table 2; 
Appendix 1; Robbins 1981; Pacifici et al. 2008). All 
models assumed psi (Ψ; the probability that a site is 
occupied by the species) and theta (Ө; the probability 
that individuals are available for detection using a 
method, given presence) were constant, and p (the 
probability of detecting the species using a method 
in a survey) remained constant through time. Since 
we were only interested in p, there was no reason to 
allow psi or theta to vary by inclusion of covariates. 
Model fit was assessed using AIC (Burnham & 
Anderson 2002).

To compare our ability to measure changes in 
abundance, an index of relative abundance was 
created for each method, again only for the top 16 
species. For the observer counts, this was simply 
the raw count of individuals of a species recorded 
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during each 5-minute bird count. For ARDs, the 
index was a count of the number of 10-second 
blocks in which a species was recorded for each 
5-minute period, which was essentially an index 
of how frequently a bird species vocalised. This 
was named the ‘acoustic prevalence index’ (API), a 
term used by Cook & Hartley (2018) and calculated 
in a similar manner. The aim was to carry out an 
exploratory analysis of relationships between the 
observer index and API, identifying any that were 
consistent and predictable. Indices from the two 
methods were plotted against each other, with 
loess curves to model relationships for each habitat. 
Indices from the two methods were then compared 
for each species in each habitat type using GLMMs 
with a Poisson distribution. Prior to modelling, the 
API values were normalized by subtracting the 
mean, and then dividing by the standard deviation 
(to produce Z values). The models were specified 
using the same method as for species-richness 
analysis, but with observer index as the response 
variable and API as an explanatory variable.

A comparison of method efficiency was based 
upon estimates of mean time spent per sampling 
location for each method, effectively a proxy for 
cost. Detailed information was not available for 
all sampling locations. However, estimates could 
be calculated from observer field diaries and notes 
from ARD processing and data entry personnel. 
The ARD processing time estimates included time 
for processing of files (manual identification of bird 
calls) and data/file management. Travel time to 
and from the sampling location was excluded, as 

this would be identical regardless of which method 
was employed. The number of skilled individuals 
employed and number of 5-minute counts 
completed/5-minute ARD periods processed per 
person were also compared between methods, to 
provide insight into staff resource requirements.

RESULTS

Detection of species-richness
The number of species detected varied considerably 
between 5-minute periods for both methods (Fig. 
3). From a total of 398 sampling locations, there 
were 93 where both methods detected no species. 
Interestingly, there were 57 sampling locations at 
which the observer method detected at least one 
species and the ARD method detected no species 
(mostly in non-forest habitats). Conversely, at 
three sampling locations the ARD method detected 
at least one species whilst the observer method 
detected none (all non-forest). Mean species-
richness per 5-minute period was comparable 
for forest (observer = 5.03, 95% CI [4.88, 5.18]; 
ARD = 5.10, 95% CI [4.93, 5.28]) and shrubland 
(observer = 5.34, 95% CI [4.83, 5.85]; ARD = 4.80, 
95% CI [4.22, 5.39]), with mean species-richness 
for non-forest being somewhat lower (observer = 
2.77, 95% CI [2.55, 2.99]; ARD = 2.21, 95% CI [2.01, 
2.41]). The loess model curves indicated a linear 
positive relationship between indices from the two 
methods, in all three habitat types (Fig. 3). There 
were two competing candidate GLMM models: 
SR2 and SR4 (Table 1), which achieved very similar 

Table 1. Candidate models for GLMM analysis of species-richness estimates from the observer and ARD methods. OBS 
= observer species-richness; ARD = ARD species-richness; hab = habitat type (forest, non-forest, shrubland); w = wind 
(0–3); n = noise (0–2); sl = sampling location (included as a random effect). The ‘/’ indicates that each model was fitted 
with a unique intercept and slope (against the ARD species-richness) for each habitat type.

Model Model definition No. of fixed effects
SR1 OBS ~ hab/ARD + w + n + (sl) 11
SR2 OBS ~ hab/ARD + w + (sl) 9
SR3 OBS ~ hab/ARD + n + (sl) 7
SR4 OBS ~ hab/ARD + (sl) 6

Table 2. A priori candidate models for individual species detection. Ψ = psi (the probability that a site is occupied by 
the species); Ө = theta (the probability that individuals are available for detection using a method, given presence); p = 
probability of detection; h = habitat type (forest, non-forest, shrubland); m = method (observer, ARD); w = wind (0–3);  
n = noise (0–2); K = the number of parameters in the model.

Model Model definition K Model Model definition K
SD1 Ψ(.), Ө(.), p(m) 4 SD5 Ψ(.), Ө(.), p(m+w+n) 11
SD2 Ψ(.), Ө(.), p(m+h) 7 SD6 Ψ(.), Ө(.), p(m+h+w) 11
SD3 Ψ(.), Ө(.), p(m+w) 8 SD7 Ψ(.), Ө(.), p(m+h+n) 10
SD4 Ψ(.), Ө(.), p(m+n) 7 SD8 Ψ(.), Ө(.), p(m+h+w+n) 14

Bird species detection method comparison
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delta AIC values (SR2 = 0, SR4 = 0.263). Model 
selection suggested that wind could be included 
as an explanatory variable; however, the effects of 
wind were small (Table 3). The existing data did 
not support the inclusion of noise into the model. 
The forest habitat type had the largest effect on 
species-richness, closely followed by shrubland 
(i.e. species-richness was generally highest in these 
habitat types; Table 3). ARD species-richness had 
an effect on observer species-richness, which means 
that for each increase in ARD species-richness, there 
was a slightly larger increase in mean observer 
species-richness. The effect of ARD species-richness 
was largest in non-forest (Table 3). Diagnostic plots 
did not indicate any problems with the model and 
the data were not over-dispersed.

A species accumulation curve (Southwood & 
Henderson 2000) was produced to compare the 
mean cumulative number of species detected with 
each successive bird count station surveyed, for 
both methods (Fig. 4). Significantly higher numbers 
of species were detected with increasing numbers 
of stations surveyed (F(4, 2218) = 68.116, p < 
0.001). However, the results showed no significant 
difference in number of species detected by the two 
methods (F(1, 2218) = 0.017, p = 0.897).

Detection of individual species
Occupancy analysis for individual species revealed 
that habitat was an important factor influencing 
detection probability for most species. Wind and/
or noise were important for all but three species 
(Table 4).
 Values for p (the probability of detecting the 
species using a method in a survey), where wind 

Figure 3. Comparison of species-richness detection per 
5-minute period, for the observer and ARD methods. 
Loess curves show the relationship between indices from 
the two methods for each habitat type. Individual data 
points have been displayed using jittering to make those 
with the same values visible.

Table 3. Results of GLMM analysis (model SR2) to test for relationships between species-richness estimates from the 
observer method (response variable) and ARD method, wind and habitat type (explanatory variables). ARD species-
richness values were normalized by subtracting the mean, and then dividing by the standard deviation. The estimate 
for forest is not shown as this was the reference habitat type to which non-forest and shrubland were compared. The 
‘/’ indicates that the model was fitted with a unique intercept and slope (against the ARD species-richness) for that  
habitat type.

Variable Estimate Standard error p value
(Intercept) 1.511 0.024 <0.001
Non-forest -0.398 0.044 <0.001
Shrubland -0.080 0.056 0.149
Wind 1 -0.068 0.040 0.094
Wind 2 -0.068 0.065 0.029
Wind 3 -0.178 0.096 0.064
Forest/ARD 0.285 0.021 <0.001
Non-forest/ARD 0.501 0.026 <0.001
Shrubland/ARD 0.339 0.049 <0.001

Mortimer et al.
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and noise variables, if included in the selected 
model for that species, were both equal to zero, 
were compared (Fig. 5; for effects of other wind and 
noise values see Appendix 3). Where habitat was 
included in the model, probability of detection was 
generally highest in forest or shrubland habitats 
and lowest in non-forest. However, common 
redpoll (Carduelis flammea) detection probability 
was higher in non-forest and shrubland, whilst 
chaffinch (Fringilla coelebs) detection probabilities 
were similar across all three habitat types. Habitat 
was not included in the selected models for brown 
creeper, New Zealand fantail (Rhipidura fuliginosa), 
song thrush (Turdus philomelos), and whitehead 
(Mohoua albicilla). Probability of detection for 
individual species was similar between methods 
with the exceptions of (in all habitat types) brown 
creeper, and (in forest only) North/South Island 
robin (Petroica longipes/australis), bellbird (Anthornis 
melanura), and to a lesser extent tūī (Prosthemadera 
novaeseelandiae) and rifleman (Acanthisitta chloris). 
Bellbird and rifleman had a higher probability of 
being detected by ARDs, whilst the remainder were 
more likely to be detected by observers.

Figure 4. Mean cumulative number of species detected 
(±95% confidence intervals) by observers and ARDs with 
each successive bird count station surveyed/processed. 

Figure 5. Probability of species 
detection (±95% confidence 
intervals), estimated using a single-
season multi-method occupancy 
model (MacKenzie et al. 2006), for the 
observer and ARD survey methods 
within each habitat type.

Bird species detection method comparison
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Indices of abundance
Comparison of indices of abundance from observer 
and ARD methods (for the top 16 species) revealed 
varied strengths of relationship between indices for 
different species, and the nature of the relationship 
often changed for different index values (i.e. did not 
produce a straight line; Fig. 6). These loess curves 
also indicated differences between habitat types 
for many species, although in some cases this may 
be due to small sample sizes for non-forest and 
shrubland habitats (Table 5). Results of GLMM 
analysis also revealed inconsistent relationships 
between API and observer indices for different 
species, with the effect size often varying in 
different habitat types (Table 6). In forest, the effect 
size ranged from 0.018 (kākā; Nestor meridionalis) to 
0.303 (rifleman); in non-forest it ranged from -0.262 
(rifleman) to 0.339 (chaffinch); and for shrubland 
the range was -0.070 (whitehead) to 0.571 (rifleman). 
Although for some species the effect sizes were 
similar for different habitat types (e.g. kākā: 0.018 
for forest, 0.019 for shrubland), for most species 
they were quite variable (e.g. rifleman: 0.303 for 
forest, -0.262 for non-forest, 0.571 for shrubland). 
Effects of wind and noise on indices were variable 
and not consistent between species (Appendix 4).

Table 4. Occupancy analysis model selected for each species (Ψ = psi; Ө = theta; p = probability of detection; h = habitat 
type (forest, non-forest, shrubland); m = method (observer, ARD); w = wind (0–3); n = noise (0–2). Odds ratios provide 
an indication of which method was more effective at detection (1 = both methods equally effective; <1 = observer method 
more effective; >1 = ARD method more effective).

Species Sampling 
locations

Model Odds ratio

Kākā (Nestor meridionalis) 398 Ψ(.), Ө (.),p(m+h+n) 0.637
Long-tailed cuckoo (Eudynamys taitensis) 398 Ψ(.), Ө (.),p(m+h) 0.492
Rifleman (Acanthisitta chloris) 398 Ψ(.), Ө (.),p(m+h+w) 1.670
Grey warbler (Gerygone igata) 398 Ψ(.), Ө (.),p(m+h+w) 0.819
Bellbird (Anthornis melanura) 398 Ψ(.), Ө (.),p(m+h+w+n) 1.820
Tūī (Prosthemadera novaeseelandiae) 398 Ψ(.), Ө (.),p(m+h+n) 0.585
Whitehead (Mohoua albicilla) 93 Ψ(.), Ө (.),p(m+n) 0.778
Brown creeper (Mohoua novaeseelandiae) 305 Ψ(.), Ө (.),p(m+w) 0.140
New Zealand fantail (Rhipidura fuliginosa) 398 Ψ(.), Ө (.),p(m+w) 0.981
Tomtit (Petroica macrocephala) 398 Ψ(.), Ө (.),p(m+h+w+n) 1.268
North/South Island robin (Petroica longipes/australis) 398 Ψ(.), Ө (.),p(m+h+w) 0.446
Silvereye (Zosterops lateralis) 398 Ψ(.), Ө (.),p(m+h+n) 1.227
Eurasian blackbird (Turdus merula) 398 Ψ(.), Ө (.),p(m+h+w+n) 1.297
Song thrush (Turdus philomelos) 398 Ψ(.), Ө (.),p(m+n) 1.717
Chaffinch (Fringilla coelebs) 398 Ψ(.), Ө (.),p(m+h) 1.266
Common redpoll (Carduelis flammea) 398 Ψ(.), Ө (.),p(m+h) 0.731

Mortimer et al.

Method efficiency
The observer-based count method was clearly more 
time-efficient than the ARD method, mainly due 
to the longer processing time requirements of the 
latter (Table 7). It was estimated that approximately 
30 minutes was required to process each ARD 
5-minute period. In a scenario where 10 bird counts 
were completed for a sampling location (2 rounds 
of 5 counts), an estimated 24.5% additional time 
would be required for the ARD method, compared 
to observers. In a scenario where only 5 bird counts 
were complete (1 round of counts), this increased to 
an estimated 92.5% additional time required for the 
ARD method.

The number of skilled ornithologists required to 
carry out the field observations was much higher 
than that required to process the ARD recordings. 
A total of 55 field observers were employed to 
carry out observer counts over the three survey 
seasons, completing a mean of 20.22 (± 2.78 SE) 
counts per person. It is worth noting that 44% 
of these completed less than 10 counts each (less 
than 1% of the total). ARD processing employed 
13 people, who processed a mean of 150.54 (± 
22.70 SE) 5-minute periods per person. When split 
by survey season a similar pattern was observed, 
with the ARD method requiring fewer people, each 
processing a larger proportion of 5-minute periods 
(Table 8).
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Figure 6. Comparison of observer 
index of abundance and Acoustic 
Prevalence Index (API) for the 
16 most frequently-occurring 
species. Loess curves show the 
relationship between indices from 
the two methods for each habitat 
type. Individual data points have 
been displayed using jittering 
to make those with the same  
values visible.

Table 5. The number of 5-minute count periods in which each species was detected by at least one method (observer or 
ARD), for each habitat type.

Species Forest Non-forest Shrubland All habitats
Kākā (Nestor meridionalis) 65 1 9 75
Long-tailed cuckoo (Eudynamys taitensis) 63 3 4 70
Rifleman (Acanthisitta chloris) 270 13 14 297
Grey warbler (Gerygone igata) 513 38 56 607
Bellbird (Anthornis melanura) 503 62 53 618
Tūī (Prosthemadera novaeseelandiae) 223 13 23 259
Whitehead (Mohoua albicilla) 73 0 7 80
Brown creeper (Mohoua novaeseelandiae) 115 15 11 141
New Zealand fantail (Rhipidura fuliginosa) 181 5 15 201
Tomtit (Petroica macrocephala) 523 36 41 600
North/South Island robin (Petroica longipes/australis) 181 7 9 197
Silvereye (Zosterops lateralis) 399 71 69 539
Eurasian blackbird (Turdus merula) 257 51 37 345
Song thrush (Turdus philomelos) 71 26 11 108
Chaffinch (Fringilla coelebs) 366 85 56 507
Common redpoll (Carduelis flammea) 74 79 36 189

Bird species detection method comparison
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Table 6. Results of GLMM analysis to test for relationships between API (ARD) and observer 5-minute bird count (OBS) 
indices of abundance, in the three habitat types (hab). API values were normalized by subtracting the mean, and then 
dividing by the standard deviation. Estimates presented are for effects of ARD on OBS in each habitat type (each fitted 
with its own unique intercept and slope). Wind (w) or noise (n) were included where these improved model fit and 
sampling location (sl) was included as a random effect. For grey warbler, kākā, long-tailed cuckoo, and tūī, non-forest 
data were excluded due to small samples sizes causing problems with the models. There were no non-forest data for 
whitehead.

Species Model definition Habitat  
type

Estimate Standard 
error

Kākā (Nestor meridionalis) OBS ~ hab/ARD + w + n + (sl) Forest 0.018 0.034
Shrubland 0.019 0.095

Long-tailed cuckoo (Eudynamys taitensis) OBS ~ hab/ARD + w + (sl) Forest 0.076 0.031
Shrubland 0.096 0.148

Rifleman (Acanthisitta chloris) OBS ~ hab/ARD + n + (sl) Forest 0.303 0.030
Non-forest -0.262 0.352
Shrubland 0.571 0.233

Grey warbler (Gerygone igata) OBS ~ hab/ARD + n + (sl) Forest 0.216 0.025
Shrubland 0.253 0.109

Bellbird (Anthornis melanura) OBS ~ hab/ARD + w + (sl) Forest 0.281 0.035
Non-forest 0.332 0.142
Shrubland 0.177 0.096

Tūī (Prosthemadera novaeseelandiae) OBS ~ hab/ARD + n + (sl) Forest 0.041 0.033
Shrubland 0.099 0.083

Whitehead (Mohoua albicilla) OBS ~ hab/ARD + w + (sl) Forest 0.141 0.033
Shrubland -0.070 0.179

Brown creeper (Mohoua novaeseelandiae) OBS ~ hab/ARD + n + (sl) Forest 0.135 0.020
Non-forest 0.005 0.128
Shrubland 0.156 0.092

New Zealand fantail (Rhipidura fuliginosa) OBS ~ hab/ARD + n + (sl) Forest 0.106 0.031
Non-forest 0.173 0.246
Shrubland -0.071 0.262

Tomtit (Petroica macrocephala) OBS ~ hab/ARD + n + (sl) Forest 0.255 0.032
Non-forest 0.078 0.169
Shrubland 0.100 0.154

North/South Island robin (Petroica longipes/australis) OBS ~ hab/ARD + n + (sl) Forest 0.144 0.032
Non-forest 0.050 0.159
Shrubland -0.075 0.148

Silvereye (Zosterops lateralis) OBS ~ hab/ARD + w + (sl) Forest 0.267 0.031
Non-forest 0.205 0.080
Shrubland 0.294 0.063

Eurasian blackbird (Turdus merula) OBS ~ hab/ARD + n + (sl) Forest 0.183 0.036
Non-forest -0.011 0.130
Shrubland 0.156 0.102

Song thrush (Turdus philomelos) OBS ~ hab/ARD + n + (sl) Forest 0.024 0.064
Non-forest -0.007 0.073
Shrubland 0.094 0.092

Chaffinch (Fringilla coelebs) OBS ~ hab/ARD + n + (sl) Forest 0.290 0.034
Non-forest 0.339 0.078
Shrubland 0.228 0.087

Common redpoll (Carduelis flammea) OBS ~ hab/ARD + w + (sl) Forest 0.223 0.059
Non-forest 0.184 0.038
Shrubland 0.173 0.047
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DISCUSSION

Detection of species-richness
The loess model curves indicate that in general, 
as species-richness recorded by the ARD method 
increased, so did species-richness recorded by the 
observer method (or vice-versa). Clearly there is 
much variation, with the ARD method recording 
more species at some sampling locations and the 
observer method recording more species at others; 
however, the overall relationship appears to be 
reasonably consistent between habitat types. The 
number of non-forest sampling locations at which 
the observer method detected species and the ARD 
method did not, suggests that the observer method 
may have an advantage in this habitat type. Results 
from GLMM analysis indicated some differences 
between species-richness estimates for the two 
methods in different habitat types, although effect 
sizes were small. For all habitat types, the observer 
tended to record higher species-richness. The effect, 
though small, was highest for non-forest habitats. 
These results conflict with findings from some 
previous studies, which revealed that either there 
were no significant differences in ability to detect 
species-richness (Haselmayer & Quinn 2000; Celis-
Murillo et al. 2009; Celis-Murillo et al. 2012) or that 
ARDs detected more species (Wimmer et al. 2013). 
Hutto & Stutzman (2009), however, found that 
observers detected a higher number of species, 
which was more consistent with our results. The 
differing conclusions of these studies may be 
influenced by variations in sample design, survey 
methods, location, environments sampled and/or 
species present; however, some considerations may 

be generally applicable. One of the main advantages 
of ARDs is that they produce a permanent record 
which can be reviewed multiple times (Haselmayer 
& Quinn 2000), whereas a field observer has only 
one chance to identify and record all species. At a 
location with high species-richness, this may give 
the ARD method an advantage. Haselmayer & 
Quinn (2000) found that data from audio recordings 
detected more species than field observers for sites 
with high species-richness, which was explained by 
having the ability to listen repeatedly to the ARD 
recordings, whereas observers can be over-whelmed 
in a field situation. An obvious advantage of the 
observer method, however, is the ability to detect 
species visually. In particular, this would potentially 
enable the observer to detect more species in open 
habitats (such as non-forest) or where there are 
species present that vocalise infrequently.

In this study, it could be that the visual detection 
advantage of observers has enabled them to detect 
higher numbers of species, especially in non-
forest habitats which are generally more open 
environments. Perhaps the ability to visually detect 
species outweighed the ARD advantage of being 
able to repeatedly listen to recordings. In a study 
by Celis-Murillo et al. (2012), some species were 
detected more often by observers in pasture and 
coastal scrub, where greater visibility was thought 
to improve the likelihood of visual detection. In 
forest, however, where detections of these species 
were mostly auditory, the ARD method was at 
least as effective as the observer method. In this 
study, the observer advantage of being able to 
detect species visually may have been reduced at 
sampling locations in forest and shrubland habitats.

Table 7. Comparison of estimated time required per sampling location for observer and ARD methods, for two scenarios: 
(1) 10 bird counts completed; (2) 5 bird counts completed.

Bird counts
completed

Method Estimated time required (minutes)
Field Data processing Total

10 ARD 360 300 660
10 Observer 440 90 530
5 ARD 360 150 510
5 Observer 220 45 265

Table 8. Number of people employed and effort per person (mean number/percentage of counts completed) for observer 
(OBS) and ARD methods.

2011–12 2012–13 2013–14 All seasons
ARD OBS ARD OBS ARD OBS ARD OBS

No. of people 6 20 9 26 11 28 13 55
Mean no. counts/person 74.7 11.6 47.2 12.7 98.5 19.7 150.5 20.2
Mean % counts/person 16.7 2.2 11.1 4.0 9.1 3.7 7.7 1.9

Bird species detection method comparison
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The cumulative mean number of species detected 
did not significantly differ between methods, 
suggesting that in this respect the two methods 
were equally effective and that the same number 
of stations (and therefore counts) were required 
to achieve similar species-richness detection. The 
cumulative mean number of species detected 
increased significantly for both methods, as the 
number of bird count stations increased, further 
reinforcing the importance of completing multiple 
bird counts at a location to maximise detection 
probability (MacKenzie & Royle 2005). The upward 
slope of the species accumulation curve between 
4 and 5 bird count stations (Fig. 4) suggests that 5 
stations may not be sufficient to detect all species 
present, and that to achieve this, further stations 
(bird counts) might be required. However, 
consideration must be given as to whether 
additional effort at the sampling location would 
justify the cost (Southwood & Henderson 2000; 
MacLeod et al. 2012).

Detection of individual species
Occupancy modelling revealed that habitat 
influenced detection probabilities for most species 
and wind and noise were often important. Most 
species included in this analysis were generally 
considered forest species, and therefore were 
more likely to be present in forest or shrubland 
habitats; not surprisingly probability of detection 
was highest in these habitats. For chaffinch, the 
difference was less pronounced, which may reflect 
its more generalist habitat requirements. It is 
perhaps less clear why habitat did not influence 
detection probabilities sufficiently to be included 
in the models selected for brown creeper, New 
Zealand fantail, and whitehead, as these species 
would normally occur in forest and shrubland 
rather than non-forest habitats. It is not surprising 
that wind and noise affected detection probabilities; 
previous studies have demonstrated that noise can 
have a negative effect (Simons et al. 2007; Pacifici et 
al. 2008), whilst wind can have the additional effect 
of influencing bird behaviour thereby reducing call 
frequency (O’Connor & Hicks 1980). As shown in 
Appendix 3, however, increasing wind and noise 
did not always appear to have a corresponding 
negative effect on detection probability. For the 
maximum wind value of 3, detection probability 
was higher when compared to wind value 2 for some 
species (e.g. bellbird and brown creeper). Similarly, 
a wind value of 0 had an apparent negative effect 
on detection probability for grey warbler (Gerygone 
igata), whereas a wind value of 1 had a positive 
effect. Some exceptions to the general pattern were 
also noted for noise, e.g. for Eurasian blackbird 
(Turdus merula) and kākā. The reasons for this are 

not obvious; however, smaller sample sizes for 
higher wind and noise values potentially resulting 
in unreliable results could partly explain these 
findings. It is also worth noting that the conditions 
during which 5-minute bird counts were conducted 
were, to a certain degree, self-censoring. That is, the 
observer was more likely to abandon the count in 
strong winds or when noise levels were high. This 
would also apply to ARDs, as recordings with high 
levels of noise would most likely be excluded from 
processing, hence the relatively small sample sizes 
for high wind and noise values.

Species detection probabilities, when compared 
between methods, were in most cases similar 
irrespective of habitat type. There were, however, 
a few instances (mostly in forest) where detection 
probabilities were different between the two 
methods, namely: bellbird, brown creeper, North 
Island/South Island robin and, to a lesser extent, 
tūī and rifleman (Fig. 5). Detection probability 
for bellbird was higher for the ARD method, 
whereas conversely for tūī it was higher for the 
observer method. There is no obvious explanation 
for these differences, unless it is related to species 
identification error, as both methods rely on manual 
identification of calls by observers or processors 
to generate data. There were 26 5-minute periods 
in which the ARD method detected bellbird only 
and the observer method detected tūī only, and 
a further 9 5-minute periods in which the ARD 
method detected tūī only and the observer method 
detected bellbird only. This suggests some degree 
of identification confusion between these two 
species, which could explain apparent differences 
in detection probability. Mortimer & Greene (2017) 
have also demonstrated that bellbird and tūī were 
frequently confused when the same ARD recordings 
were processed by two independent processors, due 
to these two species having similar-sounding calls. 
The apparent difference in detection probability for 
rifleman (in forest) is less obvious. One possibility, 
however, is that their high frequency calls (around 
7–12 kHz; Mortimer 2013) can be missed by field 
observers, whereas the use of sonograms when 
processing ARD recordings could give a visual clue 
to the presence of this species.

Identification issues could potentially partly 
explain the difference in detection probabilities 
for brown creeper, as their calls can sound similar 
to, and therefore have the potential to be confused 
with yellowhead (mohua; Mohoua ochrocephala; 
Falla et al. 1966; Higgins & Peter 2002). It is unlikely, 
however, that this was a major cause for differences 
in detection probabilities, as Mortimer et al. (2019) 
established that confusion with mohua or other 
species was only occasional, and mohua has a much 
more restricted geographic range compared to 
brown creeper (Robertson et al. 2007). The potential 
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for misidentification does, however, emphasise 
the need to quantify error rates so that these can 
be accounted for in analyses (Mortimer & Greene 
2017).

Another possible explanation is that a large 
proportion of brown creepers were detected 
visually by observers, and consequently not 
detected by ARDs. ARD processors were unlikely to 
fail to detect brown creepers in large single-species 
flocks, as they have a tendency to keep in almost 
constant vocal contact with one another (Dean 
1990). When in smaller groups, however, they can 
often be silent for many minutes (Henderson 1977; 
Cunningham 1985). Brown creepers also commonly 
occur in mixed species flocks consisting of silvereye 
(Zosterops lateralis), New Zealand fantail, grey 
warbler, parakeets (Cyanoramphus spp.), chaffinch 
and/or common redpoll (Henderson 1977; Dean 
1990; Heather & Robertson 2000; Higgins & Peter 
2002). On occasions when multiple species are 
calling simultaneously, it may be difficult to 
reliably pick out brown creeper calls. Under these 
circumstances, the visual advantage of the observer 
may enable them to identify brown creepers more 
often than ARD processors.

The ability of observers to detect birds visually is 
the most likely explanation for the higher detection 
probability of North/South Island robin, for the 
observer method. Vocalisations of this species 
are generally loud and distinctive and therefore 
we would expect both methods to be effective at 
detecting when birds are calling. However, the 
robin’s habit of foraging close to the observer, in 
a quiet and unobtrusive manner (Higgins & Peter 
2002), may result in many visual-only detections 
from observers, missed by the ARD method. This 
could be tested by re-analysing the data, including 
only aural records from field observers. However, 
since the mode of detection (aural or visual) was not 
recorded for the Tier 1 Monitoring Programme bird 
counts, this was not possible.

Another possible explanation for differences in 
species detection is that distance and/or frequency 
ranges vary between observers and ARDs. There 
will be some within-method variability, as both 
methods are affected by observer/processor hearing 
ability, which will vary between individuals and is 
affected by age and gender (Pearson et al. 1995). In 
some instances (e.g. rifleman), lack of agreement 
may be influenced by an inability to hear bird calls 
at higher frequencies. It is possible, however, that 
detection also varies between methods, due to 
limitations of human hearing and ARD technology. 
Although Celis-Murillo et al. (2009) concluded that 
their observers and ARDs had similar auditory 
ranges and consequently sampled equal areas, a 
comparison of detection ranges for Tier 1 Monitoring 
ARDs and observers has not been undertaken. 

Pryde & Greene (2016) tested ARD detection range 
for morepork (Ninox novaeseelandiae), but did not 
compare this to human observers. Never-the-less, 
we propose that detection ranges are likely to be 
similar for both methods, because if they were 
not then we would expect to observe a systematic 
difference in detection probability for all species. 
Environmental effects, such as sound attenuation, 
weather, and noise, could also affect detection 
(Morton 1975); however, since the two methods 
relied on human hearing for species detection (and 
the recordings were not noise-filtered or altered in 
any way), we would expect these effects to influence 
both methods and not result in significantly 
different detection differences.

Indices of abundance
Loess curves and results of GLMM analysis 
indicated considerable variation in strength and 
nature of relationship between indices from 
the two methods, both for different species and 
different habitat types for the same species. These 
results suggest, therefore, that ARDs were limited 
to detecting presence. The ARD index was a 
measure of call activity, which would be influenced 
by many factors including weather conditions 
(Keast 1994), presence of an observer (Gutzwiller 
et al. 1994; McShea & Rappole 1997), habitat, and 
species density (McShea & Rappole 1997). To our 
knowledge, there are no detailed studies of factors 
influencing call activity specifically for New Zealand 
birds; however, according to Dowding (2012), call 
rates are influenced by a number of factors, and 
this would make it extremely difficult to relate 
these to abundance. From ARD data, we would 
not be able to ascertain if multiple calls were from 
different birds or a single individual. In contrast, 
a field observer can estimate, using direction and 
distance, an approximation of the actual number 
of birds calling. In the absence of data for actual 
numbers of birds present, our study makes the 
assumption that the observer method produces an 
index which is representative of species abundance. 
We recognise, however, that this may not be the 
case, as such an index is not adjusted for detection 
probability and can be affected by a wide range 
of variables including time of year, time of day, 
habitat, weather, environmental noise, and observer 
ability (Dawson 1981). Although observer indices of 
this kind have received considerable criticism from 
a number of sources (e.g. Farnsworth et al. 2002; 
MacKenzie & Kendall 2002; Rosenstock et al. 2002; 
Buckland 2006), several studies have demonstrated 
their ability to detect actual changes in species 
abundance (Murphy & Kelly 2001; Elliott et al. 2010; 
Greene & Pryde 2012). It is beyond the scope of this 
study to assess the accuracy of unadjusted indices of 
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abundance. However, we believe that despite their 
limitations, indices of abundance from the observer 
method can be used to indicate major changes in 
relative abundance, and therefore a relationship (or 
lack of) between this and the ARD method index 
may provide an indication of whether or not the 
latter also has potential to show population trends.

An alternative approach to estimating species 
abundance using ARDs could be via use of ARD 
arrays (Dawson & Efford 2009; Efford et al. 2009). 
This technique estimates density from the spatial 
pattern of detection, using signal strength to 
improve precision. This approach shows promise 
and investigation into potential incorporation of 
this into DOC’s monitoring programme is currently 
underway.

Method efficiency
Estimates of time taken per sampling location for 
the Tier 1 Monitoring Programme suggested that 
the observer method was most efficient, largely 
due to the additional time required for processing 
of ARD recordings. ARDs also required some 
additional field time, since two visits to each bird 
count station were required (one for deployment 
and a second for retrieval), whereas observer 
counts could be completed with a single visit to 
each station. The disparity in processing times 
resulted from the different processes involved to 
produce data in digital format for the two methods. 
For observer count data, it was simply a matter 
of manually entering data into a custom database 
with built-in data validation checks, which could 
be done relatively quickly. The ARD recordings, 
however, required careful listening, often multiple 
times, and recording presence of species in each 
10-second block. Essentially the difference was 
that the majority of the identification work using 
observers was done whilst in the field, whereas 
with ARDs it was done upon return to the office. 
The field worker heard the 5-minute period once 
only, whilst the ARD processor could listen to 
the recorded 5-minute period as many times as 
they felt necessary. The ARD method would gain 
considerable efficiency if manual processing was 
replaced by automated call recognition. In 2014, 
DOC investigated the potential of recurrent neural 
network (RNN) techniques for automated call 
recognition of morepork, kiwi (Apteryx spp.), and 
weka (Gallirallus australis; Bagnall & Abraham 
2014). Unfortunately, this has so far proved to be 
unreliable for Tier 1 bird data, with too many false 
positives and false negatives (unpubl. data). There 
has also been much recent research by others in 
this area, exploring various techniques (e.g. Chou 
et al. 2008; Bardeli et al. 2010; Chu & Blumstein 
2011; Lopes et al. 2011; Towsey et al. 2012; Lasseck 

et al. 2018; Priyadarshani et al. 2018). DOC is 
continuing to explore possibilities in this area; 
however, at present automated call recognition is 
not sufficiently developed for incorporation into 
the Tier 1 Monitoring Programme.

Although the observer method appeared to be 
the most time-efficient for the Tier 1 Monitoring 
Programme, this may not necessarily apply to 
other projects as it will depend largely upon 
study objectives and design. Hobson et al. (2002) 
estimated that for their purposes the use of 
automated recording devices and associated 
manual processing would be more cost-effective 
than employing specialist ornithologists to carry 
out field surveys, whilst Wimmer et al. (2013) found 
use of field observers to be more time-efficient 
than ARDs. With this in mind, we recommend 
that for any monitoring programme in which 
efficiency is paramount, a pilot study is completed 
to test how potential methods perform within the 
proposed sampling design. Choice of method 
must also consider the data outputs and their 
ability to address the objectives of the programme 
(e.g. to determine species presence or estimate 
abundance). Use of ARDs, whilst potentially less 
efficient, could provide an alternative solution 
in circumstances where employing traditional 
observer-based methods is challenging, such as 
monitoring of nocturnal birds or across a large 
spatial scale. Another important consideration is 
cost of equipment (for example ARDs, processing 
software, and file storage). In addition to the initial 
cost, there will also be periodic repair, upgrade and/
or replacement costs. These costs were not included 
in this study; however, they could be critical to the 
choice of method when finances are limited.

The high proportion of people who completed 
<10 observer counts reflects the difficulties the Tier 
1 Monitoring Programme experienced in sourcing 
experienced ornithologists in the long-term. This 
was particularly the case for the first few survey 
seasons, although more recently it has been less of an 
issue, with most people employed for a full survey 
season (unpubl. data). Where presence-only data 
are sufficient, this difference in staff requirements 
suggests that the ARD method may be desirable in 
situations where skilled field observers are in short-
supply or not available during the field season – 
an advantage of ARDs noted by other researchers 
(Hobson et al. 2002; Celis-Murillo et al. 2009). 
Further efficiencies could be made for observer 
counts by using electronic data capture devices, 
reducing the need for data entry time (van Tamelen 
2004). The potential of such tools is currently being 
investigated for the Tier 1 Monitoring Programme.

Comparison of ARDs and observers, specifically 
the similar detection probabilities, reduced time-
efficiency of ARDs and inability of ARDs to record 
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abundance (and associated trends), resulted in the 
decision to discontinue processing of diurnal ARD 
recordings from the 2014–15 survey season onwards. 
Processing of nocturnal recordings continued, since 
there was no other source of data for this time 
period (i.e. no night-time observer counts). Diurnal 
recordings will continue to be collected, so that 
should techniques in automatic bird call recognition 
become sufficiently advanced, these recordings can 
be processed retrospectively. We must stress that in 
our study we have compared data from observers 
to that from a single type of ARD only, and that 
different results may be obtained from other ARDs.

Conclusions
The results show that for species-richness detection, 
observers generally recorded more species than 
ARDs; however, the overall differences were 
small. Detection probabilities for individual 
species were similar between methods for most 
species. Exceptions were probably due to either 
identification confusion or species behaviour 
resulting in visual-only detection by observers. 
The results suggested that ARDs may be limited to 
the collection of presence data, whereas observer 
counts could also monitor abundance (via indices 
or estimates of density). This may change with 
further technological developments, for example 
through the use of ARD arrays to calculate density. 
In this study, observer counts proved to be more 
time-efficient, mainly due to the relatively long 
processing time required for ARD recordings. 
Potential future technological developments in 
automated species identification could significantly 
reduce processing times, however. Higher numbers 
of skilled people were required for observer counts, 
which may make them less suitable in the absence 
of a dedicated team and if there is a shortage of 
appropriately skilled field observers during the 
survey season.
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Appendix 1. Environmental variables recorded during the observer 5-minute bird counts.

Variable Score Definition
Temperature 1 <0oC

2 0–5oC
3 6–10oC
4 11–15oC
5 16–22oC
6 >22oC

Sun 0–5 Approximate number of minutes sun overhead
Precipitation (type) M Mist

R Rain
H Hail
S Snow

Precipitation (value) 0 None
1 Dripping foliage
2 Drizzle
3 Light
4 Moderate
5 Heavy

Wind 0 Leaves still or move without noise
1 Leaves rustle
2 Leaves and branchlets in constant motion
3 Branches or trees sway

Noise 0 Not important
1 Moderate
2 Loud

Mortimer et al.

Appendix 2. Land Cover Database (LCDB) classifications (Thompson et al. 2003) included in each habitat type assigned 
to bird count stations, used in species occupancy and GLMM analyses.

Habitat type LCDB classifications included
Forest Broadleaved Indigenous Hardwoods; Deciduous Hardwoods; Exotic Forest; Indigenous Forest 
Non-forest Alpine Grass/Herbfield; Depleted Grassland; Fernland; Flaxland; Gravel or Rock; Herbaceous 

Freshwater Vegetation; Herbaceous Saline Vegetation; High Producing Exotic Grassland; Lake 
or Pond; Landslide; Low Producing Grassland; Permanent Snow and Ice; River; Sand or Gravel;  
Short-rotation Cropland; Tall Tussock Grassland

Shrubland Gorse and/or Broom; Manuka and/or Kanuka; Matagouri or Grey Scrub; Mixed Exotic Shrubland; Sub 
Alpine Shrubland
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