Notornis, 2020, *Vol.* 67: 494-502 0029-4470 © The Ornithological Society of New Zealand Inc.

SHORT NOTE

Palaeoecological reconstructions depend on accurate species identification: examples from South Island, New Zealand, *Pachyornis* (Aves: Dinornithiformes)

RICHARD N. HOLDAWAY* Palaecol Research Ltd, PO Box 16 569, Hornby, Christchurch 8042, New Zealand

RICHARD J. ROWE

Visiting Fellow, Research School of Biology, Evolution, Ecology and Genetics, Australian National University, Canberra 0200, Australia

Accurate identification of fossil remains is fundamental to analysis of the composition of New Zealand extinct bird assemblages and their habitats (e.g. wet forest, dry forest, shrubland, seral vegetation, and low and high altitudes) through space and time. Until the advent of ancient genetic analyses in the early 1990s, identification of fossil bird remains was based perforce solely on morphology (Archey 1941; Oliver 1949; Worthy 1988) and morphometrics (Cracraft 1976a, b, c; Worthy 1987, 1989, 1992, 1994). Most research has been focused on moa (Aves: Dinornithiformes), a group of large (20-200 kg) flightless palaeognathous birds (Worthy & Holdaway 2002) presently assigned to nine species in three families (Megalapterygidae; Dinornithidae; Emeidae) (Bunce et al. 2009). From the late 1990s (e.g. Cooper *et al.* 2001), the development of moa ancient DNA (aDNA) was rapid and greater reliance is now placed on use of aDNA analyses over morphology

and morphometrics (Huynen *et al.* 2003; Bunce *et al.* 2005; Huynen *et al.* 2008; Allentoft *et al.* 2009; Bunce *et al.* 2009; Seabrook-Davison *et al.* 2009; Oskam *et al.* 2010; Allentoft *et al.* 2012; Rawlence *et al.* 2012; Holdaway *et al.* 2014; Huynen *et al.* 2014).

In the moa genus *Pachyornis* (Aves: Dinornithiformes), the validity of the species P. australis Oliver, 1949 was accepted on morphological characters in 1989 (Worthy 1989) and then by ancient genetic analysis 20 years later (Bunce et al. 2009). It is known mainly from subalpine sites, with outliers in coastal dunes in Southland during the Holocene. Lowland records from Honeycomb Hill in northwest Nelson and the Punakaiki area on the West Coast of the South Island (Worthy & Holdaway 1993) date from the most recent (Weichselian-Otiran) glaciation. The species is important in palaeoecological and palaeoclimatic analyses because it is the only moa thought to be associated solely with high altitudes and cooler temperatures (Worthy & Holdaway 2002; Rawlence et al. 2012). As with other species apparently associated with

Received 20 January 2020; accepted 6 April 2020 *Correspondence: *turnagra@gmail.com*

a single habitat, such as *Anomalopteryx didiformis* in lowland rain forest (Worthy & Holdaway 2002), the presence of *P. australis* is evidence for its contemporary vegetation.

The post-cranial skeleton of *P. australis* (44–90 kg) has in the past been confused not only with that of its South Island sister species *P. elephantopus*, but also with *Euryapteryx curtus*, a similar-sized (80–90 kg) moa (Worthy 1989); see Worthy & Holdaway (2002) and Brassey *et al.* (2013) for body mass estimates for moa. Before the advent of aDNA, re-identification of individuals on morphological grounds of *E. curtus* from the late Pleistocene at Honeycomb Hill as *P. australis* altered understanding of the regional fauna and relative ecological requirements of both *Pachyornis australis* and *Euryapteryx curtus* (Worthy & Holdaway 1993, 1994, 1995, 1996, 2002).

A survey of the relationships and historical biogeography of South Island Pachyornis moa (Rawlence et al. 2012) relied almost exclusively on aDNA. They found several instances where individuals had apparently been misidentified on morphology (Table 1). Incorrect identification based on morphology has been reported for other moa taxa at Bell Hill Vineyard, North Canterbury when re-assessed using aDNA (Allentoft et al. 2014; Holdaway et al. 2014). Although examples of misidentification by genetics are reported rarely, laboratory error and contamination are always possible. Full and accurate documentation of data and methodologies are fundamental to traceability of error. Independent methodologies provide additional means of verification and validation leading to better practice.

The early years of aDNA were plagued by many issues of contamination (Cooper & Poinar 2000; Willerslev & Cooper 2004; Malmström et al. 2005; Pruvost et al. 2005; Leonard et al. 2007). Gilbert et al. (2005) cautioned against a "checklist" system of verification of aDNA results [i.e. running through a set of criteria that could be checked off on a list that was becoming accepted: "these criteria are not foolproof, and we believe that they have, in practice, replaced the use of thought and prudence when designing and executing ancient DNA studies... researchers must take a more cognitive and self-critical approach...[and] must explain, in sufficient enough detail to dispel doubt, how the data were obtained [i.e. the aDNA methodologies and laboratory conditions], and why they should be believed to be authentic [i.e. that the genetic data were actually from the samples, without contamination]" (Gilbert et al. 2005: 541).

Research on fossil birds now includes stable isotopic analysis of bone proteins, as well as the morphology, morphometrics of skeletal elements, and ancient mitochondrial and nuclear genetics

(Worthy & Holdaway 2002; Holdaway et al. 2011; Rawlence et al. 2012; Williams et al. 2012; Holdaway et al. 2013). The stable isotopes of carbon, nitrogen, oxygen, hydrogen, and sulphur are now used routinely in ecological studies of both living and extinct species and ecosystems, providing information on food webs, habitat, and trophic levels that is otherwise difficult – or for extinct systems, impossible - to obtain (Peterson & Fry 1987; Hobson 1999). Stable isotope ratios of bone proteins are more stable than, for example, aDNA and provide information relating to most of the organism's life span and comparable to that available from living organisms. The concept of isotopic niche (Bearhop *et al.* 2004) allows guantitative analysis of ecology for living and extinct species (Williams et al. 2012; Holdaway et al. 2013), although integration with ecological niches per se is an ongoing process of interpretation (Flaherty & Ben-David 2010).

Stable isotopic analysis can, as well as identifying aspects of the bird's biology and environment, be useful in testing identification of individual moa now that considerable archives of comparative data are available (e.g. Bunce *et al.* 2009; Rawlence *et al.* 2012; Allentoft *et al.* 2014; Holdaway *et al.* 2014). A survey of isotopic data for moa taxa in northwest Nelson revealed nitrogen stable isotopic ratios of three *Pachyornis* individuals that were anomalous, in relation to both their species identification by Rawlence *et al.* (2012), and to isotopic values for both taxa from the rest of the South Island.

Radiocarbon dated individuals of P. australis and P. elephantopus from deposits in northwest Nelson, the South Island West Coast, western Southland, and Stewart Island identified by morphology or genetically are listed in Table 1. The three *Pachyornis* individuals, from sites on Takaka Hill (Table 1) had been identified as *P. elephantopus* on both morphology (Worthy & Holdaway 1994) and their aDNA (Rawlence et al. 2012). The carbon and nitrogen stable isotopic ratios and altitudes of deposition of the three individuals identified by Rawlence et al. (2012) as P. elephantopus were compared with those of all other dated individuals of both taxa (of all geologic ages) for which both isotopic ratios were known, using R version 3.5.3 (R-Core-Team 2017) (script in Appendix 1) and PAST® Version 3.26 (Hammer et al. 2001) statistical software.

In 3-dimensional multivariate kernel distributions, the three individuals lay between two (altitudinal) clusters of *P. australis*, separate by their δ^{15} N values from the series of *P. elephantopus* (Fig. 1A upper, arrowed circle). When the three individuals were reclassified as *P. australis* they were accommodated in a continuous 95.4% confidence envelope for that species (Fig. 1A, lower).

Table 1. Radiocarbon dated specimens of *Pachyornis australis* and *P. elephantopus* used in analysis of species representation in northwest Nelson and Westland: ? shaded, identified genetically as *P. elephantopus* (north), identification questioned here; *, identified by morphology as *P. elephantopus* but as *P. australis* genetically; **, identified by morphology as *P. elephantopus* but potentially *P. australis*; ***, identified genetically as *P. elephantopus* (south) but potentially *P. australis*. Individual from Te Ana Titi (bold) was originally identified as *P. australis* by morphology (Worthy & Holdaway 1993) and not as *P. elephantopus* as listed by Rawlence *et al.* (2012). The Tarakohe Cave individual for which Rawlence *et al.* (2012) list no repository or registration number is one of six individuals from that site in Museum of New Zealand Te Papa Tongarewa (NMNZ), catalogued collectively as S401-410, S454 (Worthy & Holdaway 1994). Other collections are: WCM, Waitomo Museum of Caves; CM, Canterbury Museum; SMAG, Southland Museum and Gallery; OM, Otago Museum.

Original taxon	Sample	Site	Museum/ register	¹⁴ C lab no.	¹⁴ C age	$\delta^{13}C$	$\delta^{\scriptscriptstyle 15}N$
		Takaka Hill					
Pachyornis elephantopus?	A3749	Predator Cave	MNZ S32425	OxA20336	$32,\!230\pm380$	-20.53	1.42
Pachyornis elephantopus?	A3755	Takaka Hill	MNZ DM417E	OxA20293	$20,\!330\pm90$	-21.86	0.9
Pachyornis elephantopus?	A3756	Takaka Hill	MNZ DM417E	OxA20292	$14,\!145\pm60$	-21.67	2.3
Pachyornis elephantopus**	-	Hawkes Cave	MNZ S28424	NZA3240	$13{,}470\pm94$	-22.2	-
Pachyornis elephantopus**	-	Kairuru Cave	MNZ S27797	NZA1568	$18,\!950\pm230$	-20.6	-
Pachyornis elephantopus**	-	Tarakohe Cave	[MNZ S401-410,454]	NZA3047	$19,\!520\pm130$	-22.6	-
Pachyornis australis*	A3713	Takaka Hill	WCM WO90.47	OxA20291	$10{,}120\pm45$	-24.69	-1.5
Pachyornis australis	A2597	Takaka Hill	NMNZ Unreg.	OxA20290	$18,\!235\pm80$	-23.09	2.00
Pachyornis australis	-	Hawkes Cave	NMNZ S28422	NZA3237	29,011 ± 312	-22.1	-
Pachyornis australis	GU139065	Bone Cave	CM Av21331	OxA12430	$10,\!165\pm50$	-23.17	1.00
		Takaka Valley					
Pachyornis australis	A3739	Irvine's Tomo	MNZ S27881	NZA3049	$28,\!520\pm\!20$	-23.5	-
Pachyornis australis	A3740	Commentary C	MNZ S35298.1	OxA20294	$28,050 \pm 300$	-25.19	3.40
		Other areas					
Pachyornis australis	GU139066	Charleston	CM Av29445	OxA12431	$14,\!045\pm65$	-22.42	1.99
Pachyornis australis	-	Te Ana Titi	MNZ S28192	NZA2320	$25,\!070\pm\!260$	-23	-
Pachyornis australis	GU139064	Honeycomb Hill	In situ	OxA12435	$18,\!925\pm80$	-21.47	1.86
Pachyornis australis*	A3781	Honeycomb Hill	NRS348 in situ	OxA20284	$19,575\pm80$	-20.92	1.50
Pachyornis australis*	A3783	Honeycomb Hill	NRS350 in situ	OxA20285	$20,\!760\pm90$	-21.44	0.88
Pachyornis australis*	A3726	Honeycomb Hill	MNZ S25863.2	OxA20366	$17\!,\!645\pm60$	-21.03	1.65
Pachyornis australis*	A3727	Honeycomb Hill	MNZ S25867	OxA20367	$19,335\pm70$	-21.73	2.20
Pachyornis australis*	A3742	Honeycomb Hill	MNZ S25655	OxA20286	$16,\!860\pm75$	-22.66	0.60
Pachyornis australis*	A2556	Honeycomb Hill	MNZ 25868	ANU-1611	$14{,}730\pm170$	-21.8	-
Pachyornis australis*	A2557	Honeycomb Hill	MNZ S25867	ANU-1612	$14{,}950\pm150$	21.2	-
Pachyornis australis*	A2555	Honeycomb Hill	MNZ S25864	NZA7646	$15,\!000\pm200$	-	-
Pachyornis australis*	A2594	Magnesite Q	NP 5305.1-2	OxA20289	$1{,}021\pm26$	-24.69	-1.5
Pachyornis australis*	GU139067	Moa Trap Cave	MNZ S33754	OxA12669	$10,\!450\pm\!45$	-22.5	-0.8
Pachyornis australis*	A3766	Moa Arch	NRS324 in situ	OxA20297	$10,\!235\pm45$	-22.32	1.28
Pachyornis australis*	A3761	Moa Arch	NRS324 in situ	OxA20296	$10,\!265\pm45$	-21.97	0.30
Pachyornis australis*	A3757	Moa Arch	NRS324 in situ	OxA20595	$10,\!280\pm\!45$	-25.75	0.60
Pachyornis australis*	AC923	Cheops Cave	MNZ S41344	OxA20288	$1{,}928\pm27$	-22.24	1.07
Pachyornis elephantopus**	AC3736	Bulmer Cave	MNZ S23569	OxA20287	564 ± 26	-21.73	3.62
Pachyornis elephantopus**	-	Honeycomb Hill	-	NZ6586	$14{,}029\pm138$	-21.47	-
Pachyornis elephantopus**	-	Honeycomb Hill	-	NZ6453	$15,\!677\pm163$	-21.67	-
Pachyornis elephantopus**	-	Honeycomb Hill	-	NZ7323	$18,\!600\pm\!230$	-	-
Pachyornis elephantopus**	-	Honeycomb Hill	-	NZ7292	$20,\!600\pm450$	-21.44	0.88

Table 1. continued							
Pachyornis elephantopus**	-	Honeycomb Hill	-	NZ7642	$13,\!850\pm140$	-	-
Pachyornis elephantopus**	-	Honeycomb Hill	-	NZ6480	$14{,}194\pm140$	-23.35	-
Pachyornis elephantopus**	-	Honeycomb Hill	-	NZA574	$18,\!300\pm170$	-22.77	-
Pachyornis elephantopus**	-	Honeycomb Hill	-	NZ7647	$18,\!650\pm250$	-	-
Pachyornis elephantopus**	-	Honeycomb Hill	-	NZ6589	$14,\!062\pm138$	-21.54	-
Pachyornis elephantopus**	-	Honeycomb Hill	-	NZ7675	$12{,}950\pm450$	-21.51	-
Pachyornis elephantopus**	-	Madonna Cave	MNZ S28064	NZA2505	$14,\!740\pm110$	-22.6	-
Pachyornis elephantopus**	-	Madonna Cave	-	NZA2446	$20,\!680\pm160$	-22.4	-
Pachyornis elephantopus***	A2757	Avondale	SMAG 88.95	OxA20326	$2,\!885\pm28$	-22.42	2.28
Pachyornis elephantopus***	A2759	Riverton	SMAG E80.13	OxA20333	$1,\!336\pm24$	-24.54	3.49
Pachyornis elephantopus***	GU139071	Stewart Island	OM Av4661	NZA9069	654 ± 56	-22.3	3.18

The $\delta^{15}N$ values of the three individuals were significantly different from those of a sample of 11 other P. elephantopus from northwest Nelson (Single factor ANOVA: mean 1.54 v 5.973, df = 1,12, F = 51.521, $P = 1.12 \times 10^{-5}$, $F_{crit} = 4.747$) but not from those of 13 P. australis from the same area (Single factor ANOVA: mean 1.54 v 1.354, df = 1,14, F =0.0531, P = 0.8211, $F_{crit} = 4.600$). A bi-isotopic plot (Fig. 1B) placed the three individuals clearly within the range for *P. australis*. On this basis, the three birds are most likely to be P. australis rather than P. elephantopus.

Figure 1. Carbon and nitrogen stable isotopic evidence for mis-identification of three Pachyornis moa from sites on Takaka Hill. A. 3-dimensional (95.4% confidence interval envelopes) kernel distributions of carbon and nitrogen stable isotopic values of P. australis (green) and P. elephantopus (blue) in relation to altitude above ambient sea level at time of deposition: upper, three Takaka Hill individuals identified as P. elephantopus in Rawlence et al. (2012) circled, arrowed; lower, three individuals reclassified as P. australis. B. bi-isotopic plot for P. australis (black) and P. elephantopus (blue) with three Takaka Hill individuals identified as P. elephantopus in Rawlence et al. (2012) high-lighted (yellow). Large symbols for P. elephantopus are for data included in Rawlence et al. (2012); small symbols are data for P. elephantopus in North Canterbury from Allentoft et al. (2014) and Holdaway et al. (2014).

We do not suggest that stable isotopic ratios are a stand-alone method for taxon identification, but they are certainly an additional, independent criterion that can highlight potential issues in morphological and genetic taxonomy. No method can be taken as inherently error-free, but at present it seems that aDNA might be seen in that light. Hence, it is not a case of stable isotopes versus aDNA and morphology. Rawlence et al. (2012) highlight a significant number of individuals whose identifications by one or other of these methods are in conflict. Stable isotope data can provide measures of the ecology of the different taxa, which, as competitors rarely co-exist, can provide independent evidence that suggests revisiting identifications by one or both standard methods.

Potential issues with stable isotopic ratios in bone protein could include abnormal reliance on a different diet forced on the birds by local circumstances. However, bone proteins are longlived in an individual and integrate dietary and ecological conditions over many years (Holdaway *et al.* 2011). The ratios are largely independent of plant taxon, especially given that there are few C4 plants in New Zealand and none in the habitats generally used by moa. Similarly, aberrant stable isotopic values are extremely unlikely to result from introgression between the two *Pachyornis* taxa. Hybridisation has never been mooted/recorded for moa, either on the basis of morphology or genetics.

Finally, the distribution of the taxa in space and time supports the new species identification better than the present attributions. In addition, the authors of most of the genetic identifications for *Pachyornis* moa in the deposits at Honeycomb Hill (Rawlence *et al.* 2012) themselves suggest significant levels of mis-identification in the sample. The statistically significant differences – see above – between the δ^{15} N values of unquestioned *P. elephantopus* and *P. australis* show that the individuals with "anomalous" values can be clearly allocated to the other taxon.

We believe that by using all the available data we have made a strong case for revisiting the genetic and morphological identifications of the individuals concerned, and in general for use of stable isotopic data in future studies. The relationships within *Pachyornis* require further work as the phylogenetic tree provided by Rawlence *et al.* (2012) nests two species within the *P. elephantopus* clade, between separate branches still attributed to *P. elephantopus*. Clearly, if independent data such as from stable isotopes can focus attention on particular issues of identification, this will benefit all moa research. As Gilbert *et al.* (2005), point out there is no basis for an assumption of error-free analysis in aDNA, any more than in any other field.

The potential re-identification of the three *Pachyornis* individuals as *P. australis* on stable isotopic data arising from the present analysis suggested that a wider inspection of the identification was warranted. A starting point was the observation that *P. australis* individuals of all geologic ages exhibited δ^{15} N values <4‰ (Fig. 2). Morphologically and genetically identified *P. elephantopus* individuals other than the three from

Takaka Hill, in contrast, all had δ^{15} N values >4‰ (Fig. 2). A classification tree analysis (Breiman *et al.* 1984) implemented in the *rpart* package in R, yielded a partition value of δ^{15} N = 2.24‰ (Fig. 2), with three (of 19) *P. australis* and two (of 64) *P. elephantopus* mis-categorised. Two of the three *P. elephantopus* from Takaka Hill fell beneath the 2.24‰ separator and the third, at 2.3‰, within measurement error (Table 1; Fig. 2). Two accepted aDNA-identified *P. australis* and two of the southern individuals here suggested to be *P. australis* fell in the "grey area" between the observational interspecies boundary and the third was, again, within measurement error of the partition value (Table 1; Fig. 2).

Figure 2. Bone protein nitrogen stable isotopic ratios for Pachyornis australis (black circles) and P. elephantopus (northern South Island, black stars; southern clade, blue stars) and contested identifications of P. elephantopus (Takaka area, orange circles; Southland and Stewart Island, orange triangles) through time. $\delta^{15}N$ values and conventional radiocarbon ages for P. australis and contested identifications from Table 1; "northern" and "southern clade" data for *P. elephantopus* from Rawlence *et al.* (2012) and their sources. Abbreviations: PAAU, P. australis; PAEL, P. elephantopus; SC, southern clade. Interspecies boundary (dotted line) set at the $\delta^{15}N$ value separating the values for presently accepted genetically identified P. australis and P. elephantopus individuals. All three north-western South Island individuals here assigned to *P. australis* have δ¹⁵N values within the range of accepted identifications of that taxon, as do those for the three southern South Island individuals.

Figure 3. Geographic distribution of *Pachyornis* individuals with the bases for identification, conventional radiocarbon ages (without SD), and bone protein δ^{15} N values (where available). **A**, for individuals identified as *Pachyornis elephantopus* from fossil deposits west of the South Island Main Divide, in western Southland, and on Stewart Island. M, identified on morphology; G, identified genetically; ******, identification on morphology questioned by Rawlence *et al.* (2012); *******, identified both on morphology and by genetic analysis, questioned here on species differences in δ^{15} N values. **B**, for individuals identified as *Pachyornis australis* from fossil deposits west of the South Island Main Divide, in western Southland, and on Stewart Island. M, identified on morphology and by genetic analysis, questioned here on species differences in δ^{15} N values. **B**, for individuals identified as *Pachyornis australis* from fossil deposits west of the South Island Main Divide, in western Southland, and on Stewart Island. M, identified on morphology; G, identified genetically; *****, identified genetically; *****, identified genetically; *****, identification on morphology by Worthy (1989), changed from genetic analysis by Rawlence *et al.* (2012) M25070 (MNZ S28192, Table 1) was identified originally (Worthy & Holdaway 1993) as *P. australis*, not as *P. elephantopus* as listed by Rawlence *et al.* (2012). Digital Elevation Model courtesy School of Earth and Environmental Sciences, University of Canterbury.

There was no relationship between δ^{15} N values and time for the 18 individuals of unchallenged identification as *P. australis* (Table 1): a generalised linear model of δ^{15} N against conventional radiocarbon age yielded a *P* value for zero slope of 0.092; reduced major axis regression, $r^2 = 0.1505$, t =1.6834, permutation P = 0.1097; robust regression, r^2 and *t* as for reduced major axis, permutation P =0.117.

Of the ten *P. elephantopus* from Honeycomb Hill caves, a $\delta^{15}N$ measurement is presently available for only the individual dated by NZ7292. The $\delta^{15}N$ value of 0.88‰ (Table 1) supports the contention that it is *P. australis* (Rawlence *et al.* 2012). Three other individuals identified as *P. elephantopus* had $\delta^{15}N$ values <4‰ (Fig. 2), two from western Southland and a third from Mason Bay, Stewart Island (Table 1; Fig. 3). If the $\delta^{15}N$ value is indeed species-specific, as present data suggest, then SMAG 88.95 (Avondale) and SMAG E 80.13 (Riverton) as well as OM Av 4661 (Mason Bay, Stewart Island) should be identified as *P. australis*. As noted above, Worthy (1989) included Southland dunes in the range of *P. australis*, and Worthy (1998c) recorded one *P. australis* from dunes there. Worthy (1998a) makes a case for the Mason Bay individual having been brought to the island by early Polynesians, there being no other evidence that moa taxa other than *Dinornis robustus* were present there (Worthy 1998b; Holdaway *et al.* 2001). The Mason Bay individual would be the first *P. australis* to be found in an archaeological context (Worthy 1999).

It appears from these analyses that all the *Pachyornis* individuals west of the Divide presently identified as *P. elephantopus* are, instead, *P. australis*. If the remainder are also *P. australis*, too, it would mean that the glacial and interglacial moa faunas would need major re-assessment. The distributions of *P. elephantopus* and *P. australis* (Fig. 3) will need to be combined under *P. australis*. It would also

mean that the systematics of the genus *Pachyornis* will need to be revisited. That in turn would raise the possibility that the canonical association of *P. elephantopus* with *Euryapteryx curtus* as part of a fauna associated with forest-shrubland mosaics (Worthy 1997; Holdaway & Worthy 1997; Worthy & Holdaway 1993, 1994, 1995, 1996; Worthy 1998d; Worthy & Holdaway 2002) during the Holocene in the eastern South Island, occupying similar habitats west of the Divide during the Weichselian-Otiran glaciation, will have to be abandoned. *P. elephantopus* may have been confined always to the eastern South Island, as was *Emeus crassus* (Worthy & Holdaway 2002).

If these changes in identification are confirmed, it will have significant implications for the *Pachyornis* phylogenetic tree presented by Rawlence *et al.* (2012). That tree has issues such as the nesting of *P. geranoides* (North Island) and *P. australis* within a 'fragmented' *P. elephantopus*. Removing the western and southwestern *P. elephantopus* individuals to *P. australis*, as already suggested in part by Rawlence *et al.* (2012), may assist in resolving relationships within the genus. That, in turn, may involve the recognition of other taxa for, for example, the isolated western Southland population.

The re-identifications supported by stable isotopic evidence also caution against automatic acceptance of genetic identifications. State of preservation of bone and its biochemical contents, particularly in older material, and laboratory errors such as mislabelling or inter-sample contamination can and do introduce errors, just as misidentified voucher material can affect identification on morphology (Holdaway & Worthy 1993).

LITERATURE CITED

- Allentoft, M.; Schuster, S.C.; Holdaway, R.; Hale, M.; McLay, E.; Oskam, C.; Gilbert, M.T.; Spencer, P.; Willerslev, E.; Bunce, M. 2009. Identification of microsatellites from an extinct moa species using high-throughput (454) sequence data. *BioTechniques* 46: 195–200.
- Allentoft, M.E.; Collins, M.; Harker, D.; Haile, J.; Oskam, C.L.; Hale, M.L.; Campos, P.F.; Samaniego, J.A.; Gilbert, M.T.P.; Willerslev, E.; Zhang, G.; Scofield, R.P.; Holdaway, R.N.; Bunce, M. 2012. The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. *Proceedings of the Royal Society B* 279: 4724–4733.
- Allentoft, M.E.; Heller, R.; Oskam, C.L.; Lorenzen, E.D.; Hale, M.L.; Gilbert, M.T.; Jacomb, C.; Holdaway, R.N.; Bunce, M. 2014. Extinct New Zealand megafauna were not in decline before human colonization. *Proceedings of the National Academy of Sciences USA* 111: 4922–4927.

Archey, G. 1941. The moa: a study of the

Dinornithiformes. *Bulletin of the Auckland Institute and Museum* 1: 1–119.

- Bearhop, S.; Adams, C.E.; Waldron, S.; Fuller, R.A.; MacLeod, H. 2004. Determining trophic niche width: a novel approach using stable isotope analysis. *Journal of animal ecology* 73: 1007–1012.
- Brassey, C.A.; Holdaway, R.N.; Packham, A.G.; Anne, J.; Manning, P.L.; Sellers, W.I. 2013. More than one way of being a moa: differences in leg bone robustness map divergent evolutionary trajectories in Dinornithidae and Emeidae (Dinornithiformes). *PLoS One 8*: e82668.
- Breiman, L.; Friedman, J.; Olshen, R.; Stone, C. 1984. *Classification and regression trees*. Boca Raton, Chapman & Hall/CRC.
- Bunce, M.; Szulkin, M.; Lerner, H.R.; Barnes, I.; Shapiro, B.; Cooper, A.; Holdaway, R.N. 2005. Ancient DNA provides new insights into the evolutionary history of New Zealand's extinct giant eagle. *PLoS Biology* 3: e9.
- Bunce, M.; Worthy, T.H.; Phillips, M.J.; Holdaway, R.N.; Willerslev, E.; Haile, J.; Shapiro, B.; Scofield, R.P.; Drummond, A.; Kamp, P.J.; Cooper, A. 2009. The evolutionary history of the extinct ratite moa and New Zealand Neogene paleogeography. *Proceedings of the National Academy of Sciences USA* 106: 20646–20651.
- Cooper, A.; Lalueza-Fox, C.; Anderson, S.; Rambaut, A.; Austin, J.; Ward, R. 2001. Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. *Nature* 409: 704–707.
- Cooper, A.; Poinar, H.N. 2000. Ancient DNA: do it right or not at all. *Science* 289: 1139–1139.
- Cracraft, J. 1976a. Covariation patterns in the postcranial skeleton of the moas (Aves, Dinornithidae): A factor analytic study. *Paleobiology* 2: 166–173.
- Cracraft, J. 1976b. The hindlimb elements of the moas (Aves, Dinornithidae): A multivariate assessment of size and shape. *Journal of Morphology* 150: 495– 526.
- Cracraft, J. 1976c. The species of moas (Aves: Dinornithidae). *Smithsonian Contributions to Paleobiology* 27: 189–205.
- Flaherty, E.A.; Ben-David, M. 2010. Overlap and partitioning of the ecological and isotopic niches. *Oikos 119*: 1409–1416.
- Gilbert, M.T.P.; Bandelt, H.-J.; Hofreiter, M.; Barnes, I. 2005. Assessing ancient DNA studies. *Trends in Ecology & Evolution* 20: 541–544.
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. 2001. PAST: Paleontological statistics software package for education and data analysis. *Palaeontologica Electronica* 4: 1–9.
- Hobson, K.A. 1999. Tracing origins and migration of wildlife using stable isotopes: a review. *Oecologia* 120: 314–326.
- Holdaway, R.N.; Allentoft, M.E.; Jacomb, C.; Oskam, C.L.; Beavan, N.R.; Bunce, M. 2014. An extremely

low-density human population exterminated New Zealand moa. *Nature Communications* 5: 5436.

- Holdaway, R.N.; Hawke, D.J.; Bunce, M.; Allentoft, M.E. 2011. Identification of an optimal sampling position for stable isotopic analysis of bone collagen of extinct moa (Aves: Emeidae). *Notornis* 58: 1–7.
- Holdaway, R.N.; Williams, M.J.; Hawke, D.J. 2013. A comparison of the pre-human and present isotopic niches of brown teal (*Anas chlorotis*): implications for conservation. *Notornis* 60: 233– 244.
- Holdaway, R.N.; Worthy, T.H. 1993. First North Island fossil record of kea, and morphological and morphometric comparison of kea and kaka. *Notornis* 40: 95–108.
- Holdaway, R.N.; Worthy, T.H. 1997. A reappraisal of the late quaternary fossil vertebrates of Pyramid Valley Swamp, North Canterbury, New Zealand. *New Zealand Journal of Zoology* 24: 69–121.
- Holdaway, R.N.; Worthy, T.H.; Tennyson, A.J.D. 2001. A working list of breeding bird species of the New Zealand region at first human contact. *New Zealand Journal of Zoology* 28: 119–187.
- Holdaway, R.N.; Hawke, D.J.; Bunce, M.; Allentoft, M.E. 2011. Identification of an optimal sampling position for stable isotopic analysis of bone collagen of extinct moa (Aves: Emeidae). *Notornis* 58 (1): 1-7.
- Huynen, L.; Gill, B.J.; Doyle, A.; Millar, C.D.; Lambert, D.M. 2014. Identification, classification, and growth of moa chicks (Aves: Dinornithiformes) from the genus *Euryapteryx*. *PLoS One* 9: e99929.
- Huynen, L.; Lissone, İ.; Sawyer, S.; Lambert, D. 2008. Genetic identification of moa remains recovered from Tiniroto, Gisborne. *Journal of the Royal Society of New Zealand 38*(4): 231–235.
- Huynen, L.; Millar, C.D.; Scofield, R.; Lambert, D.M. 2003. Nuclear DNA sequences detect species limits in ancient moa. *Nature* 425: 175–178.
- Leonard, J.A.; Shanks, O.; Hofreiter, M.; Kreuz, E.; Hodges, L.; Ream, W.; Wayne, R.K.; Fleischer, R.C. 2007. Animal DNA in PCR reagents plagues ancient DNA research. *Journal of Archaeological Science* 34: 1361–1366.
- Malmström, H.; Storå, J.; Dalén, L.; Holmlund, G.; Götherström, A. 2005. Extensive human DNA contamination in extracts from ancient dog bones and teeth. *Molecular Biology and Evolution* 22: 2040–2047.
- Oliver, W.R.B. 1949. The moas of New Zealand and Australia. *Dominion Museum Bulletin* 15: 1–206.
- Oskam, C.L.; Haile, J.; McLay, E.; Rigby, P.; Allentoft, M.E.; Olsen, M.E.; Bengtsson, C.; Miller, G.H.; Schwenninger, J.L.; Jacomb, C.; Walter, R.; Baynes, A.; Dortch, J.; Parker-Pearson, M.; Gilbert, M.T.; Holdaway, R.N.; Willerslev, E.; Bunce, M. 2010.

Fossil avian eggshell preserves ancient DNA. *Proceedings of the Royal Society B* 277: 1991–2000.

- Peterson, B.J.; Fry, B. 1987. Stable isotopes in ecosystem studies. *Annual Review of Ecology and Systematics* 18: 293–320.
- Pruvost, M.; Grange, T.; Geigl, E.-M. 2005. Minimizing DNA contamination by using UNGcoupled quantitative real-time PCR on degraded DNA samples: application to ancient DNA studies. *BioTechniques* 38: 569–575.
- R-Core-Team. 2017. R: A language and environment for statistical computing. Available at: http:// www.R-project.org/.
- Rawlence, N.J.; Metcalf, J.L.; Wood, J.R.; Worthy, T.H.; Austin, J.J.; Cooper, A. 2012. The effect of climate and environmental change on the megafaunal moa of New Zealand in the absence of humans. *Quaternary Science Reviews* 50: 141– 153.
- Seabrook-Davison, M.; Huynen, L.; Lambert, D.M.; Brunton, D.H. 2009. Ancient DNA resolves identity and phylogeny of New Zealand's extinct and living quail (*Coturnix* sp.). *PLoS One* 4: e6400.
- Willerslev, E.; Cooper, A. 2004. Ancient dna. *Proceedings of the Royal Society B: Biological Sciences* 272: 3–16.
- Williams, M.J.; Holdaway, R.N.; Rogers, K.M. 2012. Feeding environments of New Zealand's extinct merganser revealed by stable isotope analyses. *Wildfowl* 62: 190–203.
- Worthy, T.H. 1987. Sexual dimorphism and temporal variation in the North Island moa species *Euryapteryx curtus* (Owen) and *Pachyornis mappini* Archey. *National Museum of New Zealand Records* 3: 59–70.
- Worthy, T.H. 1988. An illustrated key to the main leg bones of moas (Aves: Dinornithiformes). *National Museum of New Zealand Miscellaneous Series* 17.
- Worthy, T.H. 1989. Validation of *Pachyornis australis* Oliver (Aves; Dinornithiformes), a medium sized moa from the South Island, New Zealand. *New Zealand Journal of Geology and Geophysics* 32: 255– 266.
- Worthy, T.H. 1992. A re-examination of the species *Euryapteryx geranoides* (Owen) including comparisons with other emeiin moas (Aves: Dinornithiformes). *Journal of the Royal Society of New Zealand* 22: 19–40.
- Worthy, T.H. 1994. Reppraisal of Dinornis (Aves: Dinornithiformes) species – A morphometric analysis. New Zealand Journal of Zoology 21: 113– 134.
- Worthy, T.H. 1997. Quaternary fossil fauna of South Canterbury, South Island, New Zealand. *Journal* of the Royal Society of New Zealand 27: 67–162.
- Worthy, T.H. 1998a. Fossil avifaunas from Old Neck and Native Island, Stewart Island – Polynesian middens or natural sites? *Records of the Canterbury*

Museum 12: 49–82.

- Worthy, T.H. 1998b. Fossil avifaunas from Old Neck and Native Island, Stewart Island – Polynesian middens or natural sites? *Records of the Canterbury Museum* 12: 49–82.
- Worthy, T.H. 1998c. The Quaternary fossil avifauna of Southland, South Island, New Zealand. *Journal* of the Royal Society of New Zealand 28: 539–589.
- Worthy, T.H. 1998d. Quaternary fossil faunas of Otago, South Island, New Zealand. *Journal of the Royal Society of New Zealand 28*: 421–521.
- Worthy, T.H. 1999. What was on the menu? Avian extinction in New Zealand. New Zealand Journal of Archaeology 19: 125–160.
- Worthy, T.H.; Holdaway, R.N. 1993. Quaternary fossil faunas from caves in the Punakaiki area, West Coast, South Island, New Zealand. *Journal* of the Royal Society of New Zealand 23: 147–254.
- Worthy, T.H.; Holdaway, R.N. 1994. Quaternary fossil faunas from caves in Takaka Valley and

on Takaka Hill, northwest Nelson, South Island, New Zealand. *Journal of the Royal Society of New Zealand* 24: 297–391.

- Worthy, T.H.; Holdaway, R.N. 1995. Quaternary fossil faunas from caves on Mt Cookson, North Canterbury, South Island, New Zealand. *Journal* of the Royal Society of New Zealand 25: 333–370.
- Worthy, T.H.; Holdaway, R.N. 1996. Quaternary fossil faunas, overlapping taphonomies, and palaeofaunal reconstruction in North Canterbury, South Island, New Zealand. *Journal of the Royal Society of New Zealand* 26: 275–361.
- Worthy, T.H.; Holdaway, R.N. 2002. Lost world of the moa: prehistoric life in New Zealand. Bloomington and Christchurch: Indiana University Press and Canterbury University Press.
- Keywords: palaeoecology, moa, Dinornithiformes, identification, *Pachyornis*, morphology, morphometrics, aDNA, South Island, New Zealand

Appendix 1. Basic R script for generation of 3-dimensional kernel distributions.

require (ks) require (misc3d) require (rgl) d<-read.table(file.choose()) Altitude<-d\$V1 d13C<-d\$V2 d15N<-d\$V3 plot3d(x=Altitude,y=d13C,z=d15N,type="s",size=0.9,col="green") d.dens3d<-kde(x=d,gridsize=c(64,64,64),compute.cont=TRUE) x.latt<-d.dens3d\$eval.points[[1]] y.latt<-d.dens3d\$eval.points[[2]] z.latt<-d.dens3d\$eval.points[[3]] contour3d(x=x.latt,y=y.latt,z=z.latt,f=d.dens3d\$estimate,color="green",level=d.dens3d\$cont[95.4],add=TRUE,alpha=0.5) decorate3d(box = TRUE,axes = FALSE, main = NULL, sub = NULL,top = TRUE, aspect = FALSE, expand = 1.03) d<-read.table(file.choose()) Altitude1<-d\$V1 d13C1<-d\$V2 d15N1<-d\$V3 plot3d(x=Altitude1,y=d13C1,z=d15N1,type = "s", col="blue",size=1.0,add=TRUE) d.dens3d<-kde(x=d,gridsize=c(64,64,64),compute.cont=TRUE) x.latt<-d.dens3d\$eval.points[[1]] y.latt<-d.dens3d\$eval.points[[2]] z.latt<-d.dens3d\$eval.points[[3]] contour3d(x=x.latt,y=y.latt,z=z.latt,f=d.dens3d\$estimate,color="blue",level=d.dens3d\$cont[95.4],add=TRUE,alpha=0.5) decorate3d(box = FALSE,axes = FALSE, main = NULL, sub = NULL,top = TRUE, aspect = FALSE, expand = 1.03)