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North Island brown kiwi (Apteryx mantelli) monitoring at Whenuakite:  
Trend comparison of observer and acoustic recorder collected  
call counts
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Abstract: Observer call count surveys are utilised throughout New Zealand to monitor kiwi populations. The 
development of affordable autonomous acoustic recorders by the Department of Conservation has enabled the collection 
of large quantities of digital data. Utilising call count data from the North Island brown kiwi (Apteryx mantelli) monitoring 
programme at Whenuakite from the 2010 and 2015 survey periods, a retrospective comparison between data collected 
by human observers and acoustic recorders was undertaken. Both survey methods indicated an increase in the number 
of kiwi calls per hour between the 2010 and 2015 surveys. The overall ratio of the number of calls per hour detected by 
acoustic recorders to those detected by human observers was 1:1.52. Results from the occupancy modelling indicated 
that the average detection probability for human observers was almost twice as high as that for acoustic recorders. 
Furthermore, increasing the number of sites for monitoring kiwi populations improved the associated level of precision 
of the derived occupancy probability estimates. Adjusting the survey design to the underlying characteristics of the kiwi 
population are therefore important to gain reliable estimates of their population trajectory.
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INTRODUCTION
The use of acoustic recorders in biodiversity 
surveys has created new opportunities for long-
term studies of bird populations. Acoustic 
recorders have been shown to reduce observer bias 
(Rosenstock et al. 2002; Hutto & Stutzman 2009), 
and to avoid disturbance effects often associated 
with the presence of human observers (Alldredge et 
al. 2007). In addition, acoustic recorders are a cost-
effective sampling method that can be deployed in 
difficult to access regions over long periods of time 
(Hutto & Stutzman 2009; Steer 2010). The latter also 
has the benefit of reducing sampling time-related 

bias by allowing data collection over a wider range 
of time periods (Diefenbach et al. 2007). However, 
acoustic recorders may not be as sensitive as human 
observers over larger distances (Hutto & Stutzman 
2009). Surveys of North Island brown kiwi (Apteryx 
mantelli) and southern brown kiwi (Apteryx 
australis) populations using acoustic recorders have 
respectively been undertaken within Tongariro 
Forest Park in the Central North Island (Guillotel 
et al. 2015) and Sinbad Gully in Fiordland (Loe & 
Smart 2016). However, apart from a study on little 
spotted kiwi (Apteryx owenii) call counts by Digby 
et al. (2013), there are no published data regarding 
the outcome of human observer versus acoustic 
recorder efforts for monitoring kiwi populations. In 
their study, Digby et al. (2013) found that acoustic Received 13 March 2018; accepted 6 July 2018
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recorders could detect a similar proportion of the 
total number of calls compared to human observers 
(up to 80% compared to 94% respectively).

Our study utilised call count data from the 
Whenuakite North Island brown kiwi monitoring 
programme to compare the underlying linear trend 
in the number of calls detected in the data collected 
either by human observers or by acoustic recorders. 
In addition, the respective derived probabilities for 
a site being identified as being occupied by kiwi 
by either data collection method are compared. 
Furthermore, this study aims to provide guidance 
on selecting an appropriate number of sites and 
repeat surveys for kiwi monitoring based on 
different simulation scenarios.

MATERIALS & METHODS
Study area and field methods
The study area is situated within the Tairua 
Ecological District between Tairua and Whitianga 
(Fig. 1), on the east coast of the Coromandel 
Peninsula (36°56’ S, 175°50’ E), New Zealand. 
Historic land use practices have led to much of 
the indigenous vegetation becoming modified. 
A diverse range of secondary forest and induced 
scrublands cover steep hillsides. There are 
also some areas of farmed pasture where slope 
angles are gentler (Kessels et al. 2010). Remnant 
broadleaved associations on the coast grade to 
regenerating conifer forest on the landward side of 
the dividing coastal ridge, which reaches 311 metres 
a.s.l. Elements of primary lowland forest remain in 
the more inaccessible areas. As part of the 2,700 ha 
Whenuakite Kiwi Care project, distribution surveys 
have counted the number of calling kiwi from 24 
permanently marked sites on 4 occasions between 
2001 and 2015. These surveys have shown that kiwi 
densities increased fourfold between 2001 and 2015, 
with adult birds distributed evenly throughout the 
treatment area (Stewart et al. 2015).

This indirect comparison study was conducted 
retrospectively with the regular kiwi monitoring 
programme at Whenuakite during the 2010 and 
2015 survey periods. Calls from 5 of the survey 
sites were chosen based on previous years presence 
of kiwi within the area, and to mirror population 
densities at sites where human observers were 
located. This allowed for a sufficiently high number 
of calls to be available for recording during the 
survey periods that were comparable between data 
collection methods. All survey sites chosen were 
located within indigenous forest habitat and at least 
1 km apart. Autonomous acoustic recorders (ARs) 
developed by the Department of Conservation 
were used during this study (version B 2). ARs were 
deployed at the same sites as observers; however, 
they were programmed to operate at times when 

observers were absent to avoid creating an overlap 
between human observers and ARs. ARs were 
positioned on small tree branches approximately 
1.5 m above ground level. Recordings were made in 
mono and were digitised at 16 kHz, 16-bit precision.

Human observers collected call count data 
following methods outlined by Robertson & 
Colbourne (2003) over 3 nights from the periods 
5–19 May 2010, and from 17 April to 28 May 2015. 
ARs were deployed for 20 consecutive nights from 
14 June to 3 July 2010, and 18 consecutive nights 
from 16 April to 3 May 2015. Kiwi call count studies 
by Colbourne & Digby (2016) suggest that a small 
amount of variation in call rates can be attributed 
to differences in kiwi call activity during the 
different sampling months mentioned above. As 
these sampling months fell within the breeding 
season for brown kiwi, call activity was generally 
higher than during off-breeding season (Colbourne 
& Digby 2016). However, most of the variation is 
likely to stem from nightly fluctuations in call rates 
(Colbourne & Digby 2016). No human observer 
surveys were conducted during extreme weather, 
such as heavy rain or strong wind, or during full-
moon periods. While extreme weather may affect 
a human observer’s ability to detect kiwi call 
counts, kiwi are also known to be less likely to call 
during times of full moon (Colbourne & Digby 
2016). In contrast, ARs continued data collection 
throughout their deployment period regardless 
of environmental conditions; hereby only the first 
10 nights of readable data from each AR were 
subsequently inspected for kiwi calls using Raven 

Figure 1. Map showing location of the Whenuakite study 
site. Graticule grid lines represent 4° latitude/longitude 
intervals.
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Pro 1.5© (Bioacoustics Research Program 2014) with 
a 512-sample Hann window and 15.6 Hz resolution. 
Limiting the data to 10 nights of readable recordings 
allowed for an equal number of good quality 
recordings to be used for each survey period. 
Call count data collection started 45 minutes after 
sunset, and human observers collected call count 
data for 1 hour during each survey night (3 hours/
site/year). For the purpose of comparing the 2 data 
collection methods statistically, only AR data for the 
first hour post survey start (sunset plus 45 minutes) 
were used in the subsequent call count analysis (10 
hours/site/year).

All data collected by human observers and ARs 
were completed during the same breeding season 
of the respective years.

Data analysis and simulation
Linear mixed-effects models (LMEs) were fitted to 
the call count data to test whether the average call 
count for human observer and AR data changed 
at a comparable magnitude between the 2 survey 
years. Inferences were made using an information 
theoretic approach, where multiple models were 
compared based on their relative AICc weights 
(Akaike 1974; Burnham & Anderson 2002). In 
contrast to the regular AIC value, the AICc value is 
corrected for sample size and the number of model 
parameters, therefore providing a better measure of 
model fit when comparing several similar models 
(Burnham & Anderson 2002). AICc weights are a 
relative measure used to compare similar models, 
whereby higher AICc weights indicate what 
combination of variables, of those tested, is better 
suited to explain the observed call count pattern 
(Burnham & Anderson 2002). The multi-model 
inference compared 5 different models (Table 1), 
all of which included the number of calls per hour, 
based on the first hour of the nightly sampling 
period, as response variable. In addition, all five 
models included a random effect for the survey 
year, which accounted for the repeated measures 
structure of the data. In comparison, model 1 
included an interaction term between the sampling 
year and data collection method, as well as separate 
fixed effects for sampling site and month of year. 
The interaction term was included to compare the 
regression slopes predicted by the model for the 
change in call counts between survey years and 
data collection methods. Model 2 included all fixed 
effects of model 1 apart from month of year, while 
model 3 included the month of year parameter but 
not the fixed effect for sampling site. Furthermore, 
model 4 only included the interaction term between 
survey year and data collection method. In addition, 
a fifth intercept-only model was included as part of 
the multi-model inference.

The multi-model inference indicated model 2 
to be the statistically best supported model. Based 
on that result, multiple comparisons between 
the different levels of the site fixed effect were 
performed using Tukey contrasts. To determine 
whether an effect was statistically significant, a 
bootstrap 95% confidence interval was computed 
for a given model parameter. An overlap of the 95% 
confidence interval with zero indicated that the 
model fit predicted the parameter to be statistically 
non-significant.

In a second step, the nightly call counts were 
converted into binary detection data (detection, 
non-detection) and fitted to a static, single-season 
occupancy model. This occupancy model was used 
to predict separate detection probabilities for both 
ARs and human observers for each survey season 
respectively. The occupancy model was fitted using 
Bayesian modelling approach as described by Kéry 
& Royle (2016). For this purpose, the sampled 
population of kiwi was assumed to be closed for 
the duration of the sampling period, which allowed 
for the simultaneous estimation of detection and 
occupancy probabilities for the respective survey 
periods and sampling methods (MacKenzie et al. 
2002). The Bayesian modelling used (1) a state model 
to describe occupancy (z) at a particular site (i), and 
(2) an observation model to describe observations 
(y) made at a given site (i) and sampling night (j) 
based on the occupancy state at that particular site:

zi ~ Bernoulli(ψ)
yij|zi ~ Bernoulli(zip)
Both, the occupancy probability (ψ) and the 

probability of observation (p) were modelled as 
Bernoulli distributions using uninformative priors 
for the purpose of this study.

To provide some perspective on the number 
of sampling sites and number of survey nights 
required to achieve reliable estimates of occupancy 
probability, the above Bayesian modelling approach 
was used to simulate data assuming an average 
occupancy probability (ψ) of 0.8, and a set of 
different detection probabilities (p): 0.1, 0.5, and 0.9. 
Simulations were run for 5, 20, and 100 sampling 
sites, each scenario running over 5, 20, 50 survey 
nights and 1,000 iterations, respectively. Based on 
the estimated occupancy probabilities the root 
mean squared error (RMSE) was calculated for each 
scenario. The lower the RMSEs the more similar 
the estimated occupancy probabilities were to the 
actual occupancy probability used in a particular 
scenario. Hereby, a RMSE of 0.1 or below was taken 
as a threshold for adequate estimated precision. This 
level of precision is generally regarded as adequate 
in the current related literature for estimating 
occupancy probabilities (MacKenzie & Royle 2005; 
Guillera-Arroita et al. 2010). Notable here is that 
all simulations were run assuming nightly call 
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counts to only being performed during 1 hour. The 
predictions should therefore be taken with some 
caution when comparing them to methodology that 
uses data collected over several hours per night, or 
where kiwi population density and structure vary 
from those at Whenuakite.

All statistical data analysis and simulation was 
conducted in R 3.4.0 (R Core Team 2017) using the 
following packages and their dependencies: lme4 
(Bates et al. 2015), merTools (Knowles & Frederick 
2016) and boot (Canty & Ripley 2017) for fitting 
and summarizing linear mixed effects models, 
plyr and ggplot2 (Wickham 2009, 2011) for data 
summary and visualization. The R package jagsUI 
(Kellner 2016) was used together with JAGS 4.2.0 
(Plummer 2003) to conduct the Bayesian analysis of 
the occupancy model. 

RESULTS
Kiwi calls were detected by human observers 
and ARs at all sites during both survey seasons 
(Fig. 2). The number of calls per hour detected by 
human observers was generally higher than that 
detected by ARs and subsequent analysis at the 
same site during the first hour of recording (Fig. 
2). The overall ratio of the number of calls per hour 
detected by ARs (during first hour of recording) to 
that detected by human observers was 1:1.52.

The multi-model inference indicated that 
the combination of parameters fitted to model 2 
performed best in explaining the observed call 
count pattern, followed closely by model 1 (Table 
2). The fixed effects common to both models were 
the interaction term between sampling year and 
data collection method, as well as the site the data 
were collected. In addition, model 1 also included 
the month of year parameter; however, as indicated 
by the slightly lower AICc weight, the month 
of year parameter did not add significantly to 
explaining the observed call count pattern. Rather, 
the extra number of model parameters in model 1 
compared to model 2 meant that the AICc weight 
was comparably lower. Furthermore, none of the 
parameter combinations included in models 3, 4 or 
5 provided a good explanation of the observed call 
count pattern. From this it is possible to infer that 
the main variation in call counts is due to variations 
between sites, rather than between different survey 
months.

A more detailed examination of the model 2 
predictions supported the finding that human 
observers generally detected a higher number 
of calls during the first hour post survey start 
(sunset + 45 minutes) than ARs did at a given 
monitoring site (beta-estimate: 1.88, 95% CI: 0.67, 
3.02). Furthermore, the model predicted overall 
differences in call counts between sites, particularly 
between (i) site 5 and site 1, and (ii) site 5 and site 
4 (Tukey Contrasts: (i) beta-estimate: 1.95, 95% CIs: 
0.43, 3.46; (ii) beta-estimate: 2.11, 95% CIs: 0.50, 3.71). 
Neither the survey year, nor the interaction term 
between survey year and data collection method 
were predicted to be statistically significant (year: 
beta-estimate: -0.31, 95% CIs: -1.13, 0.55; year:type: 
beta-estimate: -0.82, 95% CIs: -2.46, 0.76).

The occupancy model indicated that the 
average detection probability for human observers 
was about twice that of ARs (Table 3). Predictions 
for the detection probabilities for ARs and human 
observers stayed constant between the 2010 and 2015 
survey seasons. In contrast, the model estimated the 
same probability of occupancy for both datasets. 
Similarly, high estimates for occupancy probability 
for the 2 different data collection methods may be 
due to the aforementioned ubiquitous spread of 
calls across all sites during both survey seasons.

Figure 2. Box and whisker plot for the first-hour call 
counts from acoustic recorder (AR) and human observer 
(HO) collected data for the 5 different sites during the 
2010 and 2015 call count surveys. Lower and upper limit 
of box indicating the range between 1st and 3rd quartiles, 
with centred bold line indicating the median of the data; 
Lower and upper whiskers indicating the minimum and 
maximum respectively, with points beyond whiskers 
indicating potential outliers (data points that lie beyond 
the ± 1.5 Inter Quartile Range).

Stewart & Hasenbank
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For the simulated scenarios, the RMSE decreased 
with increasing number of sites and survey nights 
(Fig. 3). In these simulations, the number of 
sites had the greatest effect on RMSE, while the 
increasing number of survey nights produced a 
smaller decrease in RMSE. These results are highly 
dependent on the underlying detection probability. 
Scenarios with a low detection probability (0.1) 
required a higher number of survey nights to reduce 
their associated RMSE than when the detection 
probability was high (0.9).

Figure 3. Comparison between number of sampling 
nights and the associated root mean square error (RMSE) 
estimates for occupancy probability, in relation to different 
number of survey sites. The estimates for RMSE gained 
from simulation are based on an occupancy probability 
of 0.8, and a detection probability of 0.1, 0.5 and 0.9. An 
RMSE of 0.1 or below is generally regarded as an adequate 
level of precision in the current literature (MacKenzie & 
Royle 2005; Guillera-Arroita et al. 2010).

Table 1. Models used as part of the multi-model inference. The intercept only is denoted with ~1 as fixed effect.

Model Response Fixed effects Random effects (slope)

1 Call count Year * Type + Site + Month Year

2 Call count Year * Type + Site Year

3 Call count Year * Type + Month Year

4 Call count Year * Type Year

5 Call count ~ 1 Year

Table 2. Multi-model inference: * denotes an interaction term, while K refers to the number of model parameters, 
and AICc to the sample size corrected AIC value.

Model Fixed effects Fixed effects K neg log 
-likelihood AICc Delta 

AICc
AICc 
weight

1 Year * Type + Site + Month Year * Type + Site + Month 11 -243.63 511.78 0.60 0.42

2 Year * Type + Site Year * Type + Site 10 -244.55 511.18 0.00 0.56

3 Year * Type + Month Year * Type + Month 7 -25212 519.27 8.10 0.01

4 Year * Type Year * Type 6 -252.72 518.21 7.03 0.02

5 ~ 1 ~ 1 3 -258.65 523.51 12.33 0.00

Autonomous and manual kiwi monitoring
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DISCUSSION
While the call count data collected by human 
observers and ARs followed a similar pattern, 
human observers routinely recorded a higher 
number of calls during the first hour post survey 
start (sunset + 45 minutes) than ARs (an exception 
was site 5 in 2015 where AR median calls/hour 
was higher compared to observer median calls/
hour, Fig. 2). Also this study accounted for shifts in 
call rates during different periods of the night by 
filtering both observer and AR data to only include 
those calls recorded during the first hour post 
survey start time, with no adjustment for potential 
differences in detection range for human observers 
or ARs being made. Digby et al. (2013) determined 
that simulated little spotted kiwi calls of both sexes 
were reliably detected from spectrogram inspection 
to at least 400 m, while human observers have been 
found to detect kiwi calls well beyond that distance. 
By potentially missing more distant kiwi calls, 
the ARs may have failed to identify the presence 
of kiwi at certain sites during the 2 sampling 
periods. In contrast, Stewart & Hasenbank (2012), 
and Zwart et al. (2014) demonstrated that ARs 
can provide similar results to, or even outperform 
human observers in detecting bird calls under 
certain circumstances. While no comparative study 
was available on the performance of different AR 
models used by this, or Zwart et al.’s study, the 
different outcomes in terms of sampling method 
may indicate that the effective sampling range of 
ARs depends on a variety of factors. These may 
include spectral analysis techniques, the sensitivity 
of the microphone and hardware used, the species 
monitored, the background noise level at the time 
of sampling, or the presence of acoustic barriers, 
such as tree trunks or steep hillsides, between the 
AR and the calling individual (Digby et al. 2013; 
Pryde & Greene 2016).

Furthermore, following the results from 
the multi-model inference the differences in 
month during which the different surveys were 
conducted did not affect the call count in a 
statistically significant manner. As no information 
on individual observers was available as part of 
this study, the effects of an individual observer’s 
experience and ability to detect kiwi calls could not 
be tested. However, differences between individual 
observer ability to detect kiwi calls are likely to 
have contributed to the overall variance present in 
observer call counts. While observers in this study 
were experienced in detecting kiwi calls, and thus 
reducing the possibility of false positives, variation 
in their performance may stem from differences in 
their ability to detect faint calls, or to distinguish 
between individuals when multiple kiwi call at 
the same time. Spectral analysis of the sound files 
may also be affected by observer variation. While 
no observer bias during spectral analysis was 
assessed, this potential issue was minimised by 
having the same experienced observer utilising the 
same software settings for both years’ data analysis. 
No measure of identifying false negatives for either 
data collected in the field or subsequent analysis 
was available as part of this study.

While some variation in the number of calls 
recorded per hour was found between sites during 
both survey seasons, kiwi were found to be present 
at all sites most of the time. This translated into a 
relatively high predicted occupancy probability of 
over 0.8, with a moderate to high estimate for the 
detection probability for human observers (0.94), 
and a low to moderate estimate for detection 
probability for ARs (0.42 and 0.48 for the 2010 
and 2015 survey seasons respectively). In regards 
to the per site sampling effort, the number of 
repeated samplings met the suggested minimum 
requirements for human observers and ARs 

Table 3. Results from occupancy model for detection (p) and occupancy (ψ) probabilities for different sampling 
methods and survey years, respectively. Estimates are based on a set of 5 sampling sites. Acoustic recorder estimates 
based on data collected during first hour of recording only.

Method Year Survey nights 
per site

Detection 
Probability 
(p) Mean

P Lower 
95% CI

P Upper 
95% CI

Occupancy 
probability 
(ψ) Mean

psi 
Lower 
95% CI

psi 
Upper 
95% CI

Acoustic 
recorder 2010 10 0.42 0.29 0.56 0.86 0.54 >0.99

2015 10 0.48 0.35 0.62 0.86 0.54 >0.99

Observer 2010 3 0.94 0.79 >0.99 0.86 0.54 >0.99

2015 3 0.94 0.80 >0.99 0.86 0.54 >0.99

Stewart & Hasenbank
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proposed by MacKenzie & Royle (2005): a site 
with a probability of occupancy of 0.8 should be 
sampled at least 2 times when the probability of 
detection is 0.9 or greater, or at least 4 times when 
detection probability is 0.5 or greater. In terms of 
the number of sampling sites, Guillera-Arroita & 
Lahoz-Monfort (2012) found that with decreasing 
detection probability the number of sampling sites 
required to gather reliable information on site 
occupancy increases. Likewise, in scenarios with 
rare or cryptic species, the lower occupancy and 
detection probabilities may make it necessary to 
increase the number of sampling sites to achieve the 
same estimator quality (MacKenzie & Royle 2005; 
Guillera-Arroita et al. 2010). Therefore, an increased 
survey effort may be required when surveying 
relict populations across large landscapes.

Based on the simulations conducted as part of 
this study, the predicted occupancy probabilities 
for data collected by human observers and ARs in 
the field were close to, or slightly above, the RMSE 
threshold of 0.1 for what is considered adequate 
sampling precision of the underlying site occupancy 
in the relevant literature (MacKenzie & Royle 2005; 
Guillera-Arroita et al. 2010). Looking at ways to 
improve the sampling precision in this applied 
setting, based on predictions from simulated 
scenarios, increasing the number of survey sites (e.g. 
from 5 to 20 sites for ARs) would improve the RMSE 
below the 0.1 threshold for both human observer 
and AR collected data (refer to Fig. 3). Increasing 
the number of sampling nights, however, would 
provide only a small gain in sampling precision 
of the underlying site occupancy for either human 
observers or ARs in this applied setting. It is 
important to note that this interpretation is based 
on a scenario that only uses data collected for 1 
hour post sunset per night, as data collection over 
additional hours may yield higher nightly call 
counts that may increase the overall probability of 
detection and predicted occupancy probability.

Developing a survey design that takes into 
account the characteristics of the to-be-surveyed 
kiwi population is therefore important. Factors to 
consider at the design stage should include: expected 
distribution of population across landscape, the 
number of ARs required to cover a certain area, 
selection of sites offering similar sampling coverage, 
as well as the spacing between recorders. The latter 
is important to prevent double counting of calls 
by different ARs (pseudo-replication), and where 
subsequent analysis of call counts does not allow 
for filtering of replicate recordings. Furthermore, 
the survey design should also evaluate the number 
of hours of recording during each sampling night, 
as well as the number of sampling nights required 
to adequately estimate the probability of occupancy 
for certain sites.
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