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Sexing of the endangered Floreana mockingbird  
(Mimus trifasciatus) using morphometric measurements
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Abstract: Male and female adult Floreana mockingbird (Mimus trifasciatus) have monomorphic plumage features that 
make them impossible to sex in the field. In this study, we use discriminant function analysis (DFA), a widely used 
technique, to assess the best measures to determine sex. We measured six morphological characteristics (mass, beak 
depth, beak width, tarsus length, wing length, and head-beak length) for birds of known sex (determined by molecular 
techniques) from the two extant populations of M. trifasciatus on Champion and Gardner islets, within the Galápagos 
archipelago. Using a coefficient of sexual dimorphism, we found that males are significantly larger than females in 
three of the variables. Discriminant functions using wing length and a combination of wing length + mass, and wing 
length + tarsus length could classify birds with a 98% level of accuracy. Furthermore, we were able to estimate a 
robust cut-off point to determine the sex of individuals in the field through a decision tree, using only wing length 
as morphological variable. Fast and accurate sexing of the bird based on one variable will reduce handling times and 
minimise stress for captured birds. 
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INTRODUCTION
Identifying the sex of individuals is important 
in ecological research and conservation biology 
because knowing the sex of birds can tell us 
about possible biases in population sex ratios 
and improve our knowledge of the population 
dynamics of endangered species. For example, 
in many populations, one sex may have higher 
mortality rates than the other causing a bias in 
the operational sex ratio of a population and 
potentially lowering population growth rates 
(Brekke et al. 2010). An efficient method for 
sexing monomorphic species can also improve 
protocols and methodologies for translocations 
and captive breeding programmes. In addition, 
the correct interpretation of behavioural and 
ecological data often relies on knowing the sex 
of the study individuals. Many avian species can 
be sexed using visually distinct phenotypes such 
as size and colour dimorphism; features usually 
correlated with social mating systems (Owens & 
Hartley 1998; Dunn et al. 2001) or by observing sex-
specific behaviours (Lewis et al. 2002; Joo et al. 2018). 
However, for monomorphic species or juvenile 
birds, differences are less obvious and considerable 
overlap in male and female characteristics can 
cause uncertainty. When sex-specific behaviours 
are used for assigning sex, observers may need long 
periods of observations that are time-consuming 
and logistically expensive, especially in areas of 
difficult access.

For sexing monomorphic species, with an 
absence of sexually dimorphic external factors, a 
variety of techniques have been proposed. These 
techniques include both invasive and non-invasive 
methods such as cloacal inspection, molecular 
analysis, vocalisations, statistical methods based on 
morphometrical measurements, and combinations 
of these (Lessells & Mateman 1998; Bourgeois et al. 
2007; Volodin et al. 2009; Ellrich, et al. 2010; Bazzano 
et al. 2012; Morinha et al. 2012). Of these methods, 
one of the most reliable in sexing birds has been 
the use of discriminant function analysis (DFA) 
for morphometric measurements. This technique 
has been used widely in different birds taxa from 
Procellariforms (Mischler et al. 2015) to passerines 
including species of Mimidae (Martínez-Gómez 
& Curry 1998; Fuchs & Montalti 2016), even in 
juvenile birds (Martín et al. 2000; Thorogood et al. 
2009). This method identifies individuals of known 
sex by creating a linear function of measurements 
that best discriminates between males and females 
(Phillips & Furness 1997) and the coefficient 
outputs can be used to generate an equation to 
classify the sex of further sampled individuals 
(Queen et al. 2002). However, despite the wide 
use of the method, there are some caveats in the 
robustness of discriminant equations when using 

small sample sizes (Dechaume-Moncharmont et al. 
2011). Moreover, although easy to understand by 
experts, the equations may be problematic for use 
by those involved in citizen science or community 
conservation without an academic background.

The Floreana mockingbird (Mimus trifasciatus) 
is the rarest and most range-restricted 
mockingbird species in the Galápagos archipelago 
and is classified as “endangered” by the IUCN  
(Fig. 1). Historically, M. trifasciatus occurred in the 
lowlands of Floreana Island and its surrounding 
islets. Mimus trifasciatus disappeared in the early 
1900s from Floreana Island due to a combination 
of factors, in particular, the effects of introduced 
species (Curry 1986; Hoeck et al. 2010). Currently, 
M. trifasciatus is restricted to two islets representing 
less than 1% of its former range. Because of its 
rarity (<350 individuals) and the inaccessibility 
of these islets, the ecology of the M. trifasciatus 
is poorly understood, which has prevented the 
development of management plans directed 
towards increasing the number of individuals and 
populations, in particular via reintroduction of 
birds to the lowlands of Floreana Island. Despite 
its relevant role in the history of biology (Hoeck 
et al. 2010) and its conservation importance (Ortiz-
Catedral 2018), basic aspects of the natural history 
of this species are still missing. Although there are 
existing criteria using the wing length for sexing 
Mimids in the Galápagos, most of these criteria 
have been developed based in the morphometric 
characters of a different species, the Galápagos 
mockingbird (Mimus parvulus) (Kinnaird & Grant 
1982; Curry 1988; 1989; Curry & Grant; 1989). To 
date, sex determination for M. trifasciatus has been 
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Figure 1. Adult Floreana mockingbird (Mimus trifasciatus) 
perched on an Opuntia cactus. Champion Islet. Photo: 
Enzo M. R. Reyes. 
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mentioned in Grant et al. (2000) and in Deem et 
al. (2011) but neither of these publications report 
specific criteria to determine sex of this species 
using morphometric measurements. Our goal was 
to determine whether morphological differences 
could be used to distinguish between the sexes 
of M. trifasciatus using discriminant function 
analysis. We then used a decision tree analysis 
to identify the trait(s) that provided the greatest 
discriminatory power and estimated cut-off points 
of morphological measurements that could be 
easily interpreted in the field.

MATERIALS & METHODS
Study site
This study was conducted on Champion 
(90°23’100’’W, 01°14’240’’S) and Gardner-by-
Floreana (90°17’700’’W, 01°19’969’’S) islets in the 

 

 
Figure 2. a) Location of the Galapagos Islands in South America. B) Floreana 
mockingbird (Mimus trifasciatus) populations. For the Champion population 
(90°23’100’’W, 01°14’240’’S), the study area corresponds to the whole islet. For the 
Gardner population (90°17’700’’W, 01°19’969’’S) the dotted area indicates the 12 ha 
study which is the only area accessible on the island.  
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Figure 2. a) Location of the Galapagos Islands in South 
America. B) Floreana mockingbird (Mimus trifasciatus) 
populations. For the Champion population (90°23’100’’W, 
01°14’240’’S), the study area corresponds to the whole islet. 
For the Gardner population (90°17’700’’W, 01°19’969’’S) 
the dotted area indicates the 12 ha study which is the only 
area accessible on the island. 
 

northern part of Floreana Island (Fig. 2). Champion 
is a 9.4 ha circular islet (~400 m diameter). It is a 
crater emerged from the seafloor whose maximum 
elevation is 46 meters above sea level and is located 
less than one kilometre from the coastline of 
Floreana Island (Grant et al. 2000). The Gardner-
by-Floreana islet (76.5 ha) is located 8 km off the 
coast of Floreana Island. It is a partially sunk 
volcanic cone, creating an islet covered by cliffs 
of 50–100 m high and reaching an elevation of 210 
meters a.s.l. The islet has a 100 m high plateau of 
approximately 12 ha located in the eastern part of 
the islet (Jiménez-Uzcátegui et al. 2011) that is the 
only place accessible and safe for humans.

Morphometry and molecular sexing
Birds were captured as part of an annual long-term 
monitoring study carried out since 2006. During 
November 2015, a total of 41 birds (24 males, 17 
females) were caught using a wire cage trap with 
a lure; these birds were then banded measured, 
and released. We took six morphological body 
measurements (Fig. 3) following a standardised 
measurements protocol for the species: (1) mass; 
(2) beak depth, in vertical plane in the middle of 
the nares; (3) beak width, in the upper mandible 
in a horizontal plane in the anterior edge of the 
nares; (4) tarsus length, from the intertarsal joint to 
the foot joint; (5) wing length, with the wing in a 
natural arc and at 90° angle with the radius/ulna; 
(6) head-beak length, from the upper beak tip to the 
nape. All measurements were taken to the nearest 1 
and 0.1 mm using a stopped wing ruler and Vernier 
callipers respectively, the mass was taken to the 
nearest 0.5 g using a 50 g or 100 g Pesola spring 
balance. All measurements were taken twice and 
averaged prior to knowing the sex of each bird, 
which was later confirmed by molecular analysis 
of DNA for each bird. For DNA samples, we used 
a needle to prick the brachial vein of each adult 
mockingbird shortly after capture. Approximately 
5 μL of blood was collected from each individual 
using a capillary tube (75 μL) and the blood was 
stored in a CryoTubeTM vial with 1.0 ml of Queen’s 
Lysis buffer. Vials were labelled with the respective 
metal band identity of each sampled bird. Blood 
samples were sent to the Equine Parentage 
and Animal Genetic Services Centre, Massey 
University, New Zealand for molecular analysis of 
the CHD gene of the avian sex chromosomes using 
a similar technique described in Norris-Caneda & 
Elliott (1998). 

Analysis
Assumptions of normality were tested using a 
Shapiro-Wilk Test in R (R Core Team, 2013). All 
variables met the condition of normality so no 

Sexing of the Floreana mockingbird



259Reyes et al

transformation was carried out. To test for inter-
sexual differences among the molecular sexed 
birds, we used an unpaired t-test for each pair of 
measurements. Moreover, for each measurement, 
we calculated the percentage of sexual dimorphism 
using the formula described in Holmes & Pitelka 
(1968): 100x(m-f)/m, where m and f are the mean 
values of the male and female respectively. DFA 
of the measurements of the known sex birds were 
then conducted to determine which measurements 
were most reliable for classifying individuals either 
as male or female. Wilks’ lambda (ƛ) statistics was 
used as a variable selection criterion. The accuracy 
of our discriminant functions were determined by 
the percentage of known sex individuals correctly 
classified using all the individuals. In addition, 
we applied a jack-knifing prediction procedure 
in which each case was reclassified by repeatedly 
removing a single individual and then classifying 
this individual based on the discriminant function 
generated by the remaining birds. When we 
obtained the best discriminant functions, we then 
calculated the threshold of probabilities of being 
a male or female through a decision tree analysis 
which predict an outcome based on a set of 

predictors classifying particular variables higher 
than some threshold. The analyses were run on 
R (R Core Team, 2013) using the packages MASS 
for the DFA calculations, rrcov for the multivariate 
lambda values and packages rpart, GGally, and 
tidyverse for the decision tree analysis. Univariates 
lambda values were extracted from SPSS software 
(IBM, 2020).

RESULTS
We sampled 14 birds from Champion (nine males, 
five females) and 27 birds from Gardner (15 males, 
12 females). Morphological measurements from 
the 41 birds that were molecularly sexed showed 
that males and females overlapped but generally 
males were larger than females revealing sexual 
dimorphism by size (Table 1; Fig. 4). The mean values 
for five traits: mass, beak depth, tarsus length, 
head-beak, and wing length, were significantly 
larger in males than in females. Coefficient of 
sexual dimorphism shows that mass, beak depth, 
and wing length are the most dimorph traits. The 
DFA shows that the wing trait performs the best 
as a single variable classifying birds correctly 98% 
of the time (Table 2). Because of this, we created 
four discriminant functions using a combination 
of wing length and other variables: wing length + 
mass, wing length + tarsus length, wing length + all 
beak, and all measurements combined. From this, 
wing + mass and wing + tarsus length classified 
birds correctly 98% of the time in both cases and 
had a greater discriminatory power based on the 
Wilks’ Lambda values (Table 2). As wing length 
performed the best as a univariate, the calculated 
cut-off point by a decision tree analysis was 119.5 
mm. The probability of correctly classifying as a 
female was 94% under the threshold of 119.5 mm, 
and 100% probability of correctly classifying as a 
male when the wing length is equal or larger than 
119.5 mm. The cut-off point for tarsus length was 
39.9 mm. The probability of correctly classifying 
as a female was 85% under the threshold of 39.9 
mm, and 79% probability of correctly classifying as 
a male when the tarsus length is equal or greater 
than 119.5 mm. Furthermore, for mass, we obtained 
two cut-off points: 61.6 g and 56.7 g. Birds under 61.6 
g and 56.65 g could be classified as females with 
59% and 77% probability, respectively. Meanwhile, 
birds equal or greater than 56.65 and 61.6 g could be 
classified as males with 56% and 100% probability, 
respectively. 

DISCUSSION
In this study, we investigated whether Mimus 
trifasciatus can be correctly classified as a male or 
female by morphological measurements and, if so, 
which morphological traits are the best to assign 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Description of morphological measurements used for the sexing of the 
Floreana mockingbird (Mimus trifasciatus). A) beak depth, b) beak width, c) tarsus 
length, d) wing length, and e) head-beak length. Drawing by: Enzo M. R. Reyes. 
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Figure 3. Description of morphological measurements 
used for the sexing of the Floreana mockingbird  
(Mimus trifasciatus). A) beak depth, b) beak width, c) 
tarsus length, d) wing length, and e) head-beak length. 
Drawing by: Enzo M. R. Reyes.
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an accurate classification. We concluded that male 
and female M. trifasciatus can be easily identified 
using simple morphological measurements. Our 
results confirm the assumption of Deem et al. (2011) 
that these monochromatic species present sexual 
dimorphism evident in morphological traits. 
Males were significantly larger than females in 
five of six morphological traits except beak width; 
similar features have been present in two other 
mockingbird species: Mimus saturninus and Mimus 

triurus (Fuchs & Montalti 2016). However, while 
mass appeared to be the more dimorphic trait, 
when using the coefficient of sexual dimorphism 
mass differences were not enough to correctly 
assign sex using the DFA. Male and female M. 
trifasciatus can be distinguished with 98% accuracy 
using only wing length or a combination of wing 
length, mass, and tarsus length. 

Despite the widespread use of DFA, some 
factors can affect its performance. One is the 

 

 
 
Figure 4. Plot of the measurements used as discriminant functions that best predict 
the sex of the Floreana mockingbird (Mimus trifasciatus). A) Wing length and mass and 
B) wing length and tarsus length measurements for male (open triangles) and females 
(closed circles) Floreana mockingbird. Wing length and tarsus length measures are 
given in mm, while mass is given in g. 
 
 
 
 
 
  

Figure 4. Plot of the measurements used as discriminant functions that best predict the sex of the Floreana mocking-
bird (Mimus trifasciatus). A) Wing length and mass and B) wing length and tarsus length measurements for male (open 
triangles) and females (closed circles) Floreana mockingbird. Wing length and tarsus length measures are given in mm, 
while mass is given in g.

Table 1. Morphological measurements of 41 Floreana mockingbirds (Mimus trifasciatus) sexed using molecular methods 
and percentage of dimorphism for each morphological trait. Unpaired t-test values (t), df and significant values are 
given for comparison of variables between sexes. NS = not significant. Length measurements are given in mm, while 
mass is given in g.

Males   Females   Males vs Females  
 x̅ ± sd Range n x̅  ± sd Range n t p df % Dimorphism
Mass 61.0 ± 5.5 50.0–70.6 24 56.0 ± 3.6 47.0–61.5 17 3.6 <0.001 38.9 8.2
Head-beak length 59.3 ± 1.2 56.2–61.0 24 57.9 ± 0.7 57.0–59.1 17 4.3 <0.001 37.0 2.1
Beak width 7.1 ± 0.5 6.4–8.1 24 6.9 ± 0.4 6.4–7.6 17 1.5 NS 38.1 2.7
Beak depth 6.6 ± 0.4 6.0–7.6 24 6.2 ± 0.3 5.7–7.0 17 3.9 <0.001 38.8 6.3
Tarsus length 41.1 ± 1.0 38.9–42.6 24 39.4 ± 1.3 36.9–41.5 17 4.6 <0.001 29.0 4.2
Wing length 124.1 ± 3.1 117.3–128.5 24 115.8 ± 2.2 110.0–119.0 17 9.9 <0.001 39.0 6.7
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consistency of the observer when taking the 
morphometric measurements. Some studies of 
sexing by morphological traits have found that this 
parameter can create bias in the results (Henry et al. 
2015). Here, our morphological measurements were 
taken by a single observer at both sites during the 
same period of time, thus reducing the likelihood 
of introducing bias to our analysis. Other 
disadvantages are that DFA can only be applied 
in populations with a small degree of geographic 
variation and only over a certain time frame due 
to the potential for temporal instability (Ruiz et 
al. 1998; Shealer & Cleary 2007). In the case of the 
M. trifasciatus, although there was a difference in 
morphology between populations (Reyes unpubl. 
data) most of the significant differences were related 
to the beak measurements, hence the usefulness 
of using wing length as a sexing method for both 
populations. However, our results may lose efficacy 
in the future if temporal variation in morphometric 
traits occurs, a factor that has been shown in other 
Galápagos passerines (Gibbs & Grant 1987).

We recommend the use of wing length as a 
simple trait because the accuracy of classification 
was over 90% and because this measurement has 
been widely used in other mockingbird species 
(Kinnaird & Grant 1982; Curry 1988; 1989; Curry 
& Grant 1989; Martínez-Gómez & Curry 1996; 
1998; Fuchs & Montalti 2016). We note that tarsus 
has been used in other birds to classify sex but it 
was less effective in our study (Taylor & Jamieson 
2007; Montalti et al. 2012). Additionally, we do not 
recommend the use of mass alone as a discriminant 
for sex because mass may vary daily and seasonally 
depending on, for example, reproduction status, 
resource availability, and time of day measurements 
are taken (Lehikoinen 1987). Nevertheless, the use 
of a single measurement has the added benefit of 

minimising handling time which reduces stress, 
an important factor when handling endangered 
species (Dechaume-Moncharmont et al. 2011; 
Currylow et al. 2017). Moreover, the wing is an 
easy trait to measure because the landmarks are 
well-defined and because of its size in comparison 
with other morphological traits in passerine birds. 
Bigger traits are easy to measure regardless of 
the observer’s experience reducing measurement 
errors (Yezerinac et al. 1992). One caveat is that 
our results can only be applied in non-moulting 
adults when using the wing only. Although not 
yet reported for M. trifasciatus, some passerine 
species show differentiation between the wing size 
of juvenile individuals, which have shorter and 
rounded wings when compared to adults (Norman 
1997; Green et al. 2009).

The main goal of this study was to develop a 
tool that could be easily interpreted and applied 
by the personnel of the Galápagos National 
Park. This tool does not rely on equations of the 
discriminant functions but instead, a cut point 
on key measurements, easy to record and quick 
to apply on the field. Monitoring of M. trifasciatus 
and access to the study sites are restricted due to 
the conservation status of this species. Access to 
scientists only occurs for a limited number of days 
and a limited number of people. Meanwhile, park-
rangers of the Galápagos National Park have free 
access to monitor the study sites and hence the 
need for an easy and quick tool for the monitoring 
of this endangered species.
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