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Abstract: Procellariiform seabirds are vulnerable to numerous threats, including the growing issue of urban light 
pollution. Seabirds that are found grounded are often treated by avian/wildlife rehabilitation centres, but approximately 
30% do not survive. Here, we necropsied 19 grounded Cook’s petrels (tītī, Pterodroma cookii) that did not survive and 
report the cause of death and injuries. We also investigate potential risk factors, including association with light pollution, 
seabird sex, age, and sensory features. We found that a 70% of Cook’s petrels had head trauma, internal bleeding, and/or 
wounds as the main causes of death (p > 0.05). These injuries are consistent with collisions, likely due to disorientation 
from light pollution. Most Cook’s petrels were not stressed or in poor body condition, suggesting Cook’s petrels are 
typically healthy before being affected by lights. In the sample of Cook’s petrels studied, mortality was significantly 
biased towards young and male seabirds. Despite this apparent sex difference in collision risk, there was no detectable 
sex difference in measured sensory features, e.g. males did not have significantly larger eyes than females. The potential 
sex bias in death suggests male seabirds could be more vulnerable to light pollution, which warrants further research. 
Further research is also required to determine whether individual differences in sensory features relate to grounding 
risk, as our study only included a subset of dead seabirds. We also recommend that all grounded seabirds are taken to 
rehabilitation centres rather than released immediately.
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INTRODUCTION
Artificial light at night (ALAN) or light pollution, 
a by-product of human urban development, is a 
growing concern for many animal species as it 
affects different aspects of behaviour and migration 
patterns (Lorne & Salmon 2007; Eisenbeis et al. 2009; 
Bocetti 2011; Rodríguez et al. 2017b; Van Langevelde 
et al. 2017; Hudecki & Finegan 2018). In particular, 
natural and anthropogenic factors threaten seabirds, 
including light pollution (Croxall et al. 2012; Dias et 
al. 2019).

Sensory ecology is the study of how an animal 
interacts with its environment using its sensory 
features, such as vision and olfaction and can be 
used to mitigate threats to seabirds (Madliger 2012; 
Friesen et al. 2017). Sensory ecology could also be 
used to understand light attraction in seabirds. 
ALAN interacts with the seabird’s sensory ecology, 
and as a result, seabirds may become disorientated 
and attracted to lights causing them to land and 
become grounded (Rodríguez et al. 2015; Rodríguez 
et al. 2017a; Heswall et al. 2022). Fledgling 
seabirds are especially at risk, potentially due to 
underdeveloped vision from a lack of exposure to 
visual information while underground (Mitkus et 
al. 2018; Atchoi et al. 2020).

Records of seabird groundings are widespread, 
spanning locations such as Hawai’i (Telfer et al. 1987; 
Rodríguez et al. 2015), Canary Islands (Rodriguez 
& Rodriguez 2009), Maltese Islands (Laguna et al. 
2014), Canada (Wilhelm et al. 2021), the United 
Kingdom (Syposz et al. 2018), and New Zealand 
(Deppe et al. 2017; Whitehead et al. 2019; Fischer et 
al. 2021). Once a seabird is grounded, the likelihood 
of mortality may increase, with susceptibility to 
predators, starvation, dehydration, and mammalian 
predator control traps (Imber 1975; Blight & Burger 
1997; Darby & Dawson 2000; Troy, Holmes & Green 
2011; Merkel & Johansen 2011; Rodriguez et al. 2012; 
Rodriguez et al. 2014). Furthermore, recent seabird 
studies have reported bleeding and brain damage 
from colliding with anthropogenic structures 
(Travers et al. 2021; Coleman et al. 2022).

Auckland (Tāmaki Makaurau) (36.8509°S, 
174.7645°E) is a large New Zealand (Aotearoa) city 
(1.4 million people), geographically located next to 
one of the world’s most important seabird hotspots 
(Barbera 2012; Gaskin & Rayner 2013; Whitehead 
et al. 2019). The Hauraki Gulf (1.2 million hectares) 
is in the north of the New Zealand North Island 
(Te Ika-a-Māui) and is home to approximately 27 
native and endemic seabird species (Barbera 2012; 
Gaskin & Rayner 2013; Whitehead et al. 2019). In 
Auckland, the associated light pollution from the 
city likely threatens marine and terrestrial native 
ecosystems (McNaughton et al. 2021). Seabird 
groundings correlate significantly with Auckland 
city’s lighting, with more seabirds grounded near 
brighter locations (Heswall et al. 2022). 

Many seabirds that breed on the islands of 
the Hauraki Gulf, including Cook’s petrels (tītī, 
Pterodroma cookii), must fly over Auckland to 
reach foraging grounds in the Tasman Sea (Gaskin 
& Rayner 2013). The risk to seabirds is further 
intensified because the region is rich in breeding 
sites and colonies and is especially rich in burrow-
nesting procellariiforms (Gaskin & Rayner 2013; 
Whitehead et al. 2019). Due to the differences in visual 
development, burrow-nesting procellariiforms are 
highly sensitive to ALAN (Atchoi et al. 2020), and 
especially at risk of disorientation and collision 
with infrastructure (Rodríguez et al. 2019). For 
example, in 2018 a major ALAN incident occurred 
when 64 Buller’s shearwaters (Puffinus bulleri) and 
four flesh-footed shearwaters (Ardenna carneipes), 
were attracted by vessel lights and grounded on a 
cruise ship near Little Barrier Island/Te-Hauturu-O-
Toi in the Hauraki Gulf (Morton 2018).

Cook’s petrel, a burrow-nesting procellariiform, 
is especially affected by light pollution (Heswall 
et al. 2022). This species breeds on the east side of 
the Auckland Isthmus, on Te-Hauturu-O-Toi and 
Great Barrier Island/Aotea, but must cross the city 
to reach their foraging grounds in the Tasman Sea 
(Gaskin & Rayner 2013; Heswall et al. 2022). During 
their flight over Auckland city, they are exposed to 
light pollution and are sometimes found grounded 
(Heswall et al. 2022).

Rehabilitation is very important for the 
conservation of seabirds; many are injured 
from bycatch, pollutants, and light pollution 
(Montesdeoca et al. 2017; Costa et al. 2021). A study 
in Portugal showed that over 2000 seabirds were 
admitted into a rehabilitation centre over a seven-
year period (Costa et al. 2021). Another study in 
Spain showed that ~1,900 seabirds were admitted 
into a rehabilitation centre in a ten-year period 
(Montesdeoca et al. 2017). In Auckland, when 
birds are found grounded or injured, they are 
often taken to BirdCare Aotearoa, a Department of 
Conservation permitted avian rehabilitation centre. 
The centre received 184 grounded Cook’s petrels 
from 2020 to 2022 (The Wild Neighbours Database 
Project 2021). Almost 70% of these Cook’s petrels 
survived and were released, but approximately 
30% died due to injuries (Table 1). Understanding 
the cause of death will help us determine whether 
light pollution-related collisions and injuries are 
important sources of mortality and improve our 
understanding of the impact of ALAN on seabirds.

Here we document and analyse the types of 
injuries and the likely cause of death of the Cook’s 
petrels taken to BirdCare Aotearoa that did not 
survive. We determine whether their injuries are 
likely associated with light pollution events, i.e. 
collisions with anthropogenic structures. We did 
not include seabirds which died from other causes 
such as animal or fisheries interaction. We also 
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determine whether some individual characteristics 
may increase the risk of death, such as sex, age, and 
size of sensory features.

MATERIALS AND METHODS
This research was conducted at BirdCare Aotearoa. 
Established in 2009 and located in Green Bay, 
Auckland, New Zealand, this rehabilitation centre 
receives ~6,500 native and non-native avian patients 
each year (The Wild Neighbours Database Project 
2021). From January 2020–December 2021, of those 
Cook’s petrels that died (N = 56), 19 individuals 
were kept frozen for study (The Wild Neighbours 
Database Project 2021). 

Study species
For this study, we focussed on Cook’s petrels, 
the procellariiform most commonly admitted to 
BirdCare Aotearoa (184 Cook’s petrels were found 
during 2020–2021 compared to 29 grey-faced petrels; 
Table. 1). Procellariiformes are the seabird group 
most often associated with groundings due to light 
pollution (Telfer et al. 1987; Rodríguez et al. 2015; 
Heswall et al. 2022). Grounded Cook’s petrels were 
found along urban areas near streetlights, roads, 
and buildings (The Wild Neighbours Database 
Project 2021). We did not include individuals 
that had been found injured during an animal or 
a fisheries interaction, i.e. hook in bill, so we just 
focused on those found grounded.

Preparation
Necropsies on 19 individual Cook’s petrels (Table 
1) were performed from January to May 2022. 
Specimens were stored in freezers at approximately 
-20°C and defrosted before dissections. First, we 
conducted an external examination of the body, 
assessing the overall body score from 1 to 5 based 
on pectoral muscle mass (Fig. 1). For this study, we 
used the body score conditions (Fig. 1) used by the 
veterinarians at BirdCare Aotearoa as a proxy of 
bird health (Kaytee n.d.). Age recorded was based 
on plumage condition and categorised as either 
juvenile – fresh feathers and no evidence of moult, 
or adult – frayed feathers at various moult stages 
(Spear et al. 1995). Any external injuries, whether 
deep or superficial, including bruises and broken or 
dislocated limbs were recorded as wounds (Table 
2). We conducted necropsies starting from the head 
and working toward the distal end of the body.

On completion of external examinations, the head 
was examined for trauma. We classified head trauma 
as any bruising or bleeding to the head and/or brain 
(Table 2). Morphometric measurements including 
the skull length - from the Supraoccipital to the end 
of the nasal, the skull width – from the left extended 
part of the Squamosal to the right extended part of 
the Squamosal, and the depth – from the top of the 
Frontal to the base of the Basioccipital, were taken 
using digital callipers (mm). Eyeball volume was 
calculated according to the equation:

Eyeball volume (cm3) = 2 * 1.33πa2b
Used to calculate the volume of an oblate spheroid 
(Garamszegi et al. 2002; Martínez-Ortega et al. 2014), 
where a represents the equatorial (largest) radius, 
and b represents the polar (smallest) radius.

Specimens were then dissected by means of a 
transverse incision below the rib cage and opened 
through lateral incision to access the internal 

Table 1. Seabird species, including their population sizes and the numbers admitted to BirdCare Aotearoa (2020–2021) 
and those which survived and were released. 1 Taylor & Gaskin 2013, 2 Miskelly 2013, 3 Taylor 2013a, 4 Taylor 2013b, 5 Bell 
2013, 6 Sagar 2013, 7 Southey 2013, 8 The Wild Neighbours Database Project 2021.

Common Name Latin Te Reo 
Māori

Population 
size in  
New Zealand

Numbers 
admitted to 
rehab centre 8

% 
survived 2

Number 
of birds 
used in 
this study

White-faced storm petrel Pelagodroma marina maoriana Takahikare >1,000,000 7 5 50 -
Grey-faced petrel Pterodroma gouldi Ōi ~300,000 4 29 54.6 -
Cook’s petrel Pterodroma cookii Tītī >300,000 1 184 69.9 19
Fairy prion Pachyptila turtur Tītī wainui >8,000,000 2 3 0 -
Grey petrel Procellaria cinerea Kuia ~100,000 5 1 0 -
Sooty shearwater Ardenna grisea Tītī >20,000,000 6 4 0 -
Flesh-footed shearwater Ardenna carniepes Toanui <24,000 3 2 0 -
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Figure 1. Description of the different body score conditions used to assess overall Cook’s petrel (Pterodroma cookii) health. 
Ventral view of the keel (inner, black straight lines) and pectoral/breast muscle (blue outer perimeter lines), greater 
muscle mass indicates better condition.

organs. Lifting the skin (epidermis and dermis) 
allowed assessment of any bruises on the pectoral 
muscles. Lateral cuts on the ribcage were used to 
enter the cavity and evaluate the internal organs. 
Any punctures or internal bleeding were recorded 
(Fig. 2).

We inspected each organ internally and then 
removed it to assess it for abnormalities in shape 

and colour. We first examined the liver and the 
gastrointestinal (GI) system. The GI system was then 
removed by means of cutting the mesenteries, and 
each part was cut open to reveal the contents. We 
also recorded gut contents, identifying any unusual 
items such as plastics and parasites. The heart was 
examined for external abnormalities. We removed 
the heart from the connecting arteries and veins and 
dissected it to check for internal parasites. We then 
examined and removed the lungs and kidneys. If 
the kidneys, heart, or liver were discoloured and/or 
calcified, we classified that as stress (L. Miller pers. 
comm. 17 February 2022) (Table 2; Fig. 2). Birds were 
sexed by inspecting the gonads.

Statistical Analysis
Statistical analysis was carried out using R Studio 
version 4.2.1 (RStudio Team 2020). We used both 
the Chi-squared test as well as general linear 
models with Poisson distribution. We used both 
these tests to determine which type of injury was 
more prevalent, if body score condition was related 
to death, and if there was a sex and age bias in 
mortality numbers.

To test for any correlations between sensory 
ecology (absolute and relative eyeball volume) 
and the age and sex group, we used general linear 
models with Poisson distribution. The packages 
we used included ‘ggplot2’ (Wickham 2011) and 
‘tidyverse’ (Wickham et al. 2019). 

Figure 2. Image of (a) kidney failure and internal bleeding 
compared with (b) functional kidney and no internal 
bleeding from Cook’s petrel (Pterodroma cookii) necropsies. 
Arrows indicate the location of kidneys and internal 
bleeding. Image credits: Agustina Dominguez.
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RESULTS
Cause of death
Grounded seabirds generally had four types of 
injuries (Table 2), and some seabirds displayed 
more than one category of injury (Fig. 3a,b). 7% 
of Cook’s petrels showed signs of a combination 
of head trauma, internal bleeding, and wounds, 
while 17% displayed only internal bleeding with 
no other injuries (Fig. 3a). All four categories of 
injuries were equally common (p > 0.05; Appendix 
1). 70% of seabirds had collision-related injuries 
such as head trauma, wounds, internal bleeding, or 
a combination of all three (Fig. 3a,b). However, 17% 
of seabirds in this study had signs of stress, with 
3% having a combination and stress and internal 
bleeding (Fig. 3a,b). 

Body score
Body score condition was not significantly related to 
death as roughly half of the seabirds that died were 
in good condition (3–5 body score) at death (body 
score condition of 3, p = 1; body score condition of 
4, p = 0.219). This suggests that pre-existing poor 
health before being grounded was not the main 
driver of mortality (Fig. 4a; Appendix 2).

Sex and Age
There was a significant difference between sexes, 
with more males identified in the necropsies (n = 
12) compared to females (n = 3) (GLM; p < 0.057; 
Appendix 3; Fig. 4b). This result was replicated 
using Chi-squared test (χ2 = 6.107, df = 1, p = 0.013).

All 19 Cook’s petrels necropsied were juveniles 
(GLM; p < 0.048; Appendix 4; Fig. 4b). As above, this 
result was replicated using a Chi-squared test (χ2 = 
19, df = 1, p < 0.0001). 

Visual sensory features
There was no significant difference between 
absolute and relative eyeball volume between sexes 
and age groups (p > 0.05; Appendix 5). The average 
absolute eyeball volume was 29.27 cm3 (±0.9 cm3), 
and the average relative eyeball volume was 0.95 
cm3 (±0.159) (Appendix 6).

DISCUSSION 
The majority of Cook’s petrels found grounded in 
Auckland city, and that later died in rehabilitation 
had head trauma and internal bleeding.  

Deaths of grounded seabirds

Table 2. Description of each category of injury for Cook’s 
petrel (Pterodroma cookii).

Injury Description
Head Trauma bruising or bleeding to the head 

and brain

Internal bleeding bleeding found inside the internal 
cavity

Wounds fractures, cuts, punctures, open 
wounds, dislocations

Long term stress emaciation and abnormal 
discolouration and/or calcifications 
of the liver, kidney or heart, and 
parasites

Figure 3. Cause of death and injuries which are collision-related, stress-related and unknown for each Cook’s petrel 
(Pterodroma cookii) (a), and the percentage of the categories of collisional-related injuries (b).
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These are injuries consistent with collisions rather 
than other threats such as fisheries bycatch. Our 
results support previous research, which found 
that grounded seabirds in other parts of the 
world typically have injuries associated with 
collisions from anthropogenic structures due 
to disorientation by lights (Travers et al. 2021; 
Coleman et al. 2022). 

Body Score and stress
We did not find any associations between mortality 
and body condition scores, indicating that seabirds 
are not necessarily stressed or in poor condition 
prior to being affected by ALAN. Indeed, a study 
on short-tailed shearwaters (Ardenna tenuirostris) 
showed that the fledglings grounded by light 
pollution often had a better body condition than 
those that were beach wrecked (Rodriguez et al. 
2017a). Another study researching a variety of other 
seabird species also noticed this trend (Cuesta-
García et al. 2022). We do not have any data on the 
body score condition for seabirds which survived 
and were released by BirdCare Aotearoa or for 
seabirds that were never grounded, limiting our 
ability to contrast recovered and dead bird body 
condition. Collecting such data in the future would 
facilitate comparisons of those that died and those 
that were released. 

Only 17% of the seabirds in this study had signs 
of long-term stress. A potential cause of this could be 
a lack of food, which can affect seabird survival and 
breeding cycles. This has been studied in seabirds, 
including the little blue penguin (Eudyptula minor), 
and yellow-eyed penguin (Megadyptes antipodes) 
where both studies showed that prey availability 

influenced survival (Perriman et al. 2000; Muller 
et al. 2022). Although the vast majority of seabirds 
had collision-related injuries rather than signs of 
long-term stress, stress was evident in some of the 
seabirds. Therefore, it may be beneficial in the long 
term to study why seabirds experience stress and 
ways to potentially mitigate this.

Sex and age
We found that juvenile males were the most likely 
to be fatally injured. This illustrates that sex and 
age are contributing factors to collision death. 
There have been sex and age differences recorded 
in seabird foraging patterns, migratory patterns, 
and bycatch numbers (Taylor et al. 2002; Deakin 
et al. 2019; Beck et al. 2021; Schultz et al. 2021). For 
example, in northern gannets (Morus bassanus), 
breeding females tended to forage further offshore 
compared to breeding males (Stauss et al. 2012; Lewis 
et al. 2022), and a difference in timing of departure 
between male and female northern gannets has 
also been described (L. Miller pers. comm. 23 March 
2023). However, to our knowledge, there has been 
no record in the literature of a seabird sex bias for 
light attraction. The only other study that examined 
sex in relation to ALAN found no sex bias in 
Cory’s shearwater (Calonectris borealis) (Rodríguez 
et al. 2012). Our results may be the first record of 
a potential sex bias for seabird mortality in New 
Zealand from light pollution. This sex bias could be 
a result of differences in behaviour and migratory 
patterns between males and females. However, 
there is little research on Cook’s petrel life history, 
indicating that more research is required. 

 Heswall et al

Figure 4. (a) The body score, and (b) the sex and age group of the 19 Cook’s petrels (Pterodroma cookii) used in this study.
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Regarding age differences, it is relatively well-
established that fledglings are more susceptible to 
light attraction, especially during their first flights 
(Telfer et al. 1987; Rodriguez et al. 2014; Deppe 
et al. 2017; Travers et al. 2021). Fledglings are 
inexperienced but potentially curious (Telfer et al. 
1987; Isangedighi et al. 2020), which could result 
in their attraction to, and disorientation by lights, 
leading to a higher chance of collision and injuries. 
Our findings corroborate this as many juvenile 
fledglings, especially Cook’s petrel fledglings, 
were admitted to the rehabilitation centre. Recent 
studies in Gran Canaria Island, Spain, recorded 
that the majority of seabirds admitted were because 
of light pollution and that many were juveniles 
(Montesdeoca et al. 2017). We report for the first 
time in New Zealand that there was a greater 
proportion of juvenile Cook’s petrel with fatal 
injuries compared to adults since no adults were 
found from our necropsies of the Cook’s petrels. 

Sensory features
Although we found age and sex differences in 
mortality, there was no difference in the size of the 
visual organs according to age and sex. Thus, any 
differences in the attraction rates or risk of mortality 
are unlikely to be due to age or sex differences in the 
size or sensitivity of the seabirds’ visual or sensory 
organs. Further research is required to compare 
the visual capacity of seabirds grounded by light 
pollution and those which were not grounded by 
light pollution. 

Across species, the number of groundings 
from light pollution could be related to species 
differences in sensory features (Heswall et al. 
2022). This could be because those with larger 
eyeball volumes relative to their body size have a 
greater visual capacity to be attracted to the lights 
(Kiltie 2000). Therefore, seabird species with larger 
eyeballs could be more likely to be disorientated 
and collide with buildings and/or land on the 
ground. Similarly, a study on bycatch numbers 
has shown that seabird species with larger sensory 
features, such as a larger eye socket volume relative 
to their body size, were more likely to be attracted 
to fishing vessels and become bycatch (Heswall et 
al. 2021). 

Rehabilitation
Our study highlights the importance of rehabilitation 
centres in mitigating the effects of these threats and 
risks to wildlife such as seabirds (Lalas et al. 2023). 
These organisations offer the possibility of helping 
individuals in distress, in this case, grounded 
seabirds attracted by anthropogenic light pollution 
(Rodriguez et al. 2017b; Heswall et al. 2022). It also 
highlights the importance of admitting seabirds 

to rehabilitation centres for health assessments 
and care. This is because if some seabirds are not 
assessed, they could be released with injuries which 
could reduce their chances of survival. Furthermore, 
these centres provide resources and data for future 
studies to explore the impact of threats to seabirds 
and other species. 

Conclusion
In conclusion, our results show that a large majority 
of grounded seabird deaths were due to injuries 
associated with collisions. Many of these seabirds 
were healthy outside of collision injuries, suggesting 
that collisions with anthropogenic structures due to 
disorientation from light pollution are an important 
source of mortality. This research is one of the first 
studies in Auckland and Aotearoa to describe the 
injuries of seabirds from light pollution, and the 
effects of age and sex. Since all of these Cook’s 
petrels in this study were fledglings, once a year 
during the fledging season (March-May), turning 
off non-essential lights could potentially minimise 
risks to seabirds. Furthermore, it confirms the 
necessity of bringing all grounded seabirds to 
rehabilitation centres rather than releasing them 
immediately as they could have underlying trauma, 
which upon immediate release, could be fatal.
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Appendix 1. Output of the general linear model where the predictor variable are ‘Injuries’ and the base category is the 
‘wounds’ group. The response variable is the number of each ‘Injury’ group. Bold and * indicates significance.

Injuries Estimate Std. Error Z value P value
Head Trauma 0.47 0.570 0.824 0.409
Internal Bleeding 0.47 0.570 0.824 0.409
Long term stressor 0.00 0.632 0.000 1.000

Appendix 2. Output of the general linear model where the predictor variable is the ‘body score’ and the base category is 
the ‘five’ group. The response variable is the number of each ‘body score’ group. 

Variable Estimate Std. Error Z Value P value
One 2.88E-01 7.64E-01 0.377 0.706
Two -4.06E-01 9.13E-01 -0.44 0.656
Three -1.46E-16 8.17E-01 0 1
Four 8.47E-01 6.90E-01 1.228 0.219

Appendix 3. Output of the general linear model where the predictor variable is sex and the base category is ‘unknown’ 
sex group. The response variable is the number of each sex group. Bold and * indicates significance.

Variable Estimate Std. Error Z Value P value
Sex – Male 1.098 0.577 -0.377 0.057 *
Sex – Female -0.287 0.763 -0.377 0.706

Appendix 4. Output of the general linear model where the predictor variable is the ‘Age’ and the base category is the 
‘unknown’ age group. The response variable is the number of each ‘Age’ group. Bold and * indicates significance.

Variable Estimate Std. Error Z Value P value
Age – Adult -19.368 4356.881 -0.004 0.996
Age – Juvenile 1.029 0.521 1.976 0.048 *

Appendix 5. Output of the general linear model where the predictor variable is both ‘sex’ and ‘age’ and the base category 
is ‘unknown’ group. The response variable is the absolute and relative eyeball volume. 

Absolute eyeball volume Relative eyeball volume
Variable Estimate Std. Error T value P value Estimate Std. Error T value P value
Sex – Female -6.278 5.7836 -1.085 0.296 -0.194 0.206 -0.948 0.359
Sex – Male -0.944 4.983 -0.018 0.852 -0.076 0.177 -0.428 0.675
Age – Juvenile 2.691 4.675 0.576 0.574 0.153 0.166 0.919 0.374

Appendix 6. Morphological and sensory measurements of the 19 juvenile Cook’s petrels used in the necropsies.

Variable Mean Standard Deviation Standard Error
Skull length (mm) 68.83 7.59 0.91
Skull width (mm) 36.68 53.68 8.86
Skull depth (mm) 21.09 1.86 0.40
Bill length (mm) 28.38 1.27 0.24
Bill depth (mm) 6.67 0.45 0.17
Bill width (mm) 8.98 0.95 0.32
Wing length (mm) 231.07 8.11 0.53
Eyeball volume (cm3) 29.27 4.57 0.85
Relative eyeball volume (cm3) 0.95 0.16 0.16
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